Zoll surface

In mathematics, a Zoll surface, named after Otto Zoll, is a surface homeomorphic to the 2-sphere, equipped with a Riemannian metric all of whose geodesics are closed and of equal length. While the usual unit-sphere metric on S2 obviously has this property, it also has an infinite-dimensional family of geometrically distinct deformations that are still Zoll surfaces. In particular, most Zoll surfaces do not have constant curvature.

Zoll, a student of David Hilbert, discovered the first non-trivial examples.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.