Isotopes of zinc
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight (Ar) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-five radioisotopes have been characterised with the most abundant and stable being 65Zn with a half-life of 244.26 days, and 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.
Zinc has been proposed as a "salting" material for nuclear weapons (cobalt is another, better-known salting material). A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV[2] of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several days. Such a weapon is not known to have ever been built, tested, or used.[3]
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
54Zn | 30 | 24 | 53.99295(43)# | 2p | 52Ni | 0+ | |||
55Zn | 30 | 25 | 54.98398(27)# | 20# ms [>1.6 µs] | 2p | 53Ni | 5/2−# | ||
β+ | 55Cu | ||||||||
56Zn | 30 | 26 | 55.97238(28)# | 36(10) ms | β+ | 56Cu | 0+ | ||
57Zn | 30 | 27 | 56.96479(11)# | 38(4) ms | β+, p (65%) | 56Ni | 7/2−# | ||
β+ (35%) | 57Cu | ||||||||
58Zn | 30 | 28 | 57.95459(5) | 84(9) ms | β+, p (60%) | 57Ni | 0+ | ||
β+ (40%) | 58Cu | ||||||||
59Zn | 30 | 29 | 58.94926(4) | 182.0(18) ms | β+ (99%) | 59Cu | 3/2− | ||
β+, p (1%) | 58Ni | ||||||||
60Zn[n 3] | 30 | 30 | 59.941827(11) | 2.38(5) min | β+ | 60Cu | 0+ | ||
61Zn | 30 | 31 | 60.939511(17) | 89.1(2) s | β+ | 61Cu | 3/2− | ||
61m1Zn | 88.4(1) keV | <430 ms | 1/2− | ||||||
61m2Zn | 418.10(15) keV | 140(70) ms | 3/2− | ||||||
61m3Zn | 756.02(18) keV | <130 ms | 5/2− | ||||||
62Zn | 30 | 32 | 61.934330(11) | 9.186(13) h | β+ | 62Cu | 0+ | ||
63Zn | 30 | 33 | 62.9332116(17) | 38.47(5) min | β+ | 63Cu | 3/2− | ||
64Zn | 30 | 34 | 63.9291422(7) | Observationally Stable[n 4] | 0+ | 0.4917(75) | |||
65Zn | 30 | 35 | 64.9292410(7) | 243.66(9) d | β+ | 65Cu | 5/2− | ||
65mZn | 53.928(10) keV | 1.6(6) µs | (1/2)− | ||||||
66Zn | 30 | 36 | 65.9260334(10) | Stable | 0+ | 0.2773(98) | |||
67Zn | 30 | 37 | 66.9271273(10) | Stable | 5/2− | 0.0404(16) | |||
68Zn | 30 | 38 | 67.9248442(10) | Stable | 0+ | 0.1845(63) | |||
69Zn | 30 | 39 | 68.9265503(10) | 56.4(9) min | β− | 69Ga | 1/2− | ||
69mZn | 438.636(18) keV | 13.76(2) h | IT (96.7%) | 69Zn | 9/2+ | ||||
β− (3.3%) | 69Ga | ||||||||
70Zn | 30 | 40 | 69.9253193(21) | Observationally Stable[n 5] | 0+ | 0.0061(10) | |||
71Zn | 30 | 41 | 70.927722(11) | 2.45(10) min | β− | 71Ga | 1/2− | ||
71mZn | 157.7(13) keV | 3.96(5) h | β− (99.95%) | 71Ga | 9/2+ | ||||
IT (.05%) | 71Zn | ||||||||
72Zn | 30 | 42 | 71.926858(7) | 46.5(1) h | β− | 72Ga | 0+ | ||
73Zn | 30 | 43 | 72.92978(4) | 23.5(10) s | β− | 73Ga | (1/2)− | ||
73m1Zn | 195.5(2) keV | 13.0(2) ms | (5/2+) | ||||||
73m2Zn | 237.6(20) keV | 5.8(8) s | β− | 73Ga | (7/2+) | ||||
IT | 73Zn | ||||||||
74Zn | 30 | 44 | 73.92946(5) | 95.6(12) s | β− | 74Ga | 0+ | ||
75Zn | 30 | 45 | 74.93294(8) | 10.2(2) s | β− | 75Ga | (7/2+)# | ||
76Zn | 30 | 46 | 75.93329(9) | 5.7(3) s | β− | 76Ga | 0+ | ||
77Zn | 30 | 47 | 76.93696(13) | 2.08(5) s | β− | 77Ga | (7/2+)# | ||
77mZn | 772.39(12) keV | 1.05(10) s | IT (50%) | 77Zn | 1/2−# | ||||
β− (50%) | 77Ga | ||||||||
78Zn | 30 | 48 | 77.93844(10) | 1.47(15) s | β− | 78Ga | 0+ | ||
78mZn | 2673(1) keV | 319(9) ns | (8+) | ||||||
79Zn | 30 | 49 | 78.94265(28)# | 0.995(19) s | β− (98.7%) | 79Ga | (9/2+) | ||
β−, n (1.3%) | 78Ga | ||||||||
80Zn | 30 | 50 | 79.94434(18) | 545(16) ms | β− (99%) | 80Ga | 0+ | ||
β−, n (1%) | 79Ga | ||||||||
81Zn | 30 | 51 | 80.95048(32)# | 290(50) ms | β− (92.5%) | 81Ga | 5/2+# | ||
β−, n (7.5%) | 80Ga | ||||||||
82Zn | 30 | 52 | 81.95442(54)# | 100# ms [>300 ns] | β− | 82Ga | 0+ | ||
83Zn | 30 | 53 | 82.96103(54)# | 80# ms [>300 ns] | 5/2+# |
- ↑ Abbreviations:
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Final product of the silicon-burning process; its production is endothermic and accelerates the star's collapse
- ↑ Believed to undergo β+β+ decay to 64Ni with a half-life over 2.3×1018 a
- ↑ Believed to undergo β−β− decay to 70Ge with a half-life over 1.3×1016 a
Notes
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
- Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
- Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights (CIAAW).
References
- ↑ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure Appl. Chem. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ↑ Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of 65Zn". Zeitschrift für Physik. 250: 395. Bibcode:1972ZPhy..250..395D. doi:10.1007/BF01379752.
- ↑ D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
- ↑ "Universal Nuclide Chart". nucleonica. (Registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- M. Berglund; M. E. Wieser (2009). "Isotopic compositions of the elements 2009 (IUPAC Technical Report)" (PDF). Pure and Applied Chemistry. 83 (2): 397–410. doi:10.1351/PAC-REP-10-06-02.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved 23 February 2017.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
External links
Isotopes of copper | Isotopes of zinc | Isotopes of gallium |
Table of nuclides |