YAMBO code

Yambo
Original author(s) Andrea Marini
Developer(s) Conor Hogan, Myrta Gruning, Daniele Varsano, Davide Sangalli, Andrea Ferretti, Pedro Melo, Ryan McMillan, Fabio Affinito, Alejandro Molina-Sanchez, Henrique Miranda
Initial release 2008 (2008)
Stable release
4.1.2 / 20 December 2016 (2016-12-20)
Repository github.com/yambo-code/yambo
Development status Active
Written in Fortran, C
Operating system Unix, Unix-like
Platform x86, x86-64
Available in English
Type Many-body theory
License Mix: proprietary freeware, GPL
Website www.yambo-code.org

Yambo is a computer software package for studying many-body theory aspects of solids and molecule systems.[1] It calculates the excited state properties of physical systems from first principles, e.g., from quantum mechanics law without the use of empirical data. Parts of it are open-source software released under a GNU General Public License (GPL).[2]

Excited state properties

Yambo can calculate:

Physical systems

Yambo can treat molecules and periodic systems (both metallic an insulating) in three dimensions (crystalline solids) two dimensions (surfaces) and one dimension (e.g., nanotubes, nanowires, polymer chains). It can also handle collinear (i.e., spin-polarized wave functions) and non-collinear (spinors) magnetic systems.

Typical systems are of the size of 10-100 atoms, or 10-400 electrons, per unit cell in the case of periodic systems.

Theoretical methods and approximations

Yambo relies on many-body perturbation theory and time-dependent density functional theory.[8][9] Quasiparticle energies are calculated within the GW approximation[10] for the self energy. Optical properties are calculated either by solving the Bethe–Salpeter equation[11][12] or by using the adiabatic local density approximation within time-dependent density functional theory.

Numerical details

Yambo uses a plane waves basis set to represent the electronic (single-particle) wavefunctions. Core electrons are described with norm-conserving pseudopotentials. The choice of a plane-wave basis set enforces the periodicity of the systems. Isolated systems, and systems that are periodic in only one or two directions can be treated by using a supercell approach. For such systems Yambo offers two numerical techniques for the treatment of the Coulomb integrals: the cut-off[13] and the random-integration method.

Technical details

User interface

System requirements, portability

Non-GPL part

Part of the YAMBO code is not released in the GPL version, these are the features implemented in the non-GPL part:

References

  1. Yambo: an ab-initio tool for excited state calculations Andrea Marini, Conor Hogan, Myrta Grüning, Daniele Varsano Comp. Phys. Comm. 180, 1392 (2009).
  2. http://www.yambo-code.org/theory/features.php
  3. 1 2 Wilfried G. Aulbura, Lars Jönssona and John W. Wilkins Solid State Physics, 54, 1 (1999)
  4. A. Marini, R. Del Sole, A. Rubio e G. Onida, Phys. Rev. B 66, 161104(R) (2002).
  5. M. Grüning, A. Marini and X. Gonze Nano Letters, 9, 2820 (2009)
  6. S. Botti, et al. Phys. Rev. B 69, 155112 (2004).
  7. S. Botti, et al. Phys. Rev. B 72, 125203 (2005)
  8. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)
  9. E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985)
  10. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61 (1998) 237
  11. Bethe-Salpeter equation: the origins
  12. G. Strinati, Rivista del nuovo cimento 11,1 (1988)
  13. C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006).
  14. D. Caliste, Y. Pouillon, M.J. Verstraete, V. Olevano, and X. Gonze, Computer Physics Communications Volume 179, Issue 10, (2008), Pages 748-758
  15. A. Marini, P. Garcia-Gonzalez, and A. Rubio. Phys. Rev. Lett., 96, 136404 (2006).
  16. A. Marini, Phys. Rev. Lett. 101, 106405 (2008)
  17. E. Cannuccia and A. Marini, Phys. Rev. Lett. 107, 255501 (2011)
  18. D. Sangalli and A. Marini, Nano Letters 11, 4052 (2011)
  19. D. Sangalli, A. Marini and A. Debernardi, Prys. Rev. B 86, 125139 (2012)
  20. C. Hogan, M. Palummo and R. Del Sole, Comptes Rendus Physique, 10, 560 (2009)
  21. F. Bruneval, N. Vast and L. Reining, Phys. Rev. B 74, 045102 (2006)
  22. A. Marini and R. Del Sole, Phys. Rev. Lett. 91, 176402 (2003)
  23. C. Attaccalite M. Grüning and A. Marini, Phys. Rev. B 84, 245110 (2011)
  24. A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett., 91, 256402 (2003)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.