Dyskeratosis congenita

Dyskeratosis congenita
Classification and external resources
Specialty medical genetics
ICD-10 Q82.8
ICD-9-CM 757.39
OMIM 305000
DiseasesDB 30105
eMedicine derm/111
MeSH D019871

Dyskeratosis congenita (DKC), also called Zinsser-Cole-Engman syndrome,[1][2]:570 is a rare progressive congenital disorder with a highly variable phenotype.[3] The entity was classically defined by the triad of abnormal skin pigmentation, nail dystrophy, and leukoplakia of the oral mucosa, but these components do not always occur.[3] DKC is characterized by short telomeres. Some of the manifestations resemble premature aging (similar to progeria). The disease initially mainly affects the skin, but a major consequence is progressive bone marrow failure which occurs in over 80%, causing early mortality.[3]

Characteristics

DKC can be characterized by cutaneous pigmentation, premature graying, dystrophy of the nails, leukoplakia of the oral mucosa, continuous lacrimation due to atresia of the lacrimal ducts, often thrombocytopenia, anemia, testicular atrophy in the male carriers, and predisposition to cancer. Many of these symptoms are characteristic of geriatrics, and those carrying the more serious forms of the disease often have significantly shortened lifespans.

Clinical features

Age: The mucocutaneous features of DKC typically develop between ages 5 and 15 years. The median age of onset of the peripheral cytopenia is 10 years.

Sex: The male-to-female ratio is approximately 3:1.

Physical: The triad of reticulated hyperpigmentation of the skin, nail dystrophy, and leukoplakia characterizes DKC. The syndrome is clinically heterogeneous; in addition to the diagnostic mucocutaneous features and bone marrow failure, affected individuals can have a variety of other clinical features.

Cutaneous findings: The primary finding is abnormal skin pigmentation, with tan-to-gray hyperpigmented or hypopigmented macules and patches in a mottled or reticulated pattern. Reticulated pigmentation occurs in approximately 90% of patients. Poikilodermatous changes with atrophy and telangiectasia are common. The cutaneous presentation may clinically and histologically resemble graft versus host disease. The typical distribution involves the sun-exposed areas, including the upper trunk, neck, and face. Other cutaneous findings may include alopecia of the scalp, eyebrows, and eyelashes; premature graying of the hair; hyperhidrosis; hyperkeratosis of the palms and soles; and adermatoglyphia (loss of dermal ridges on fingers and toes).

Nail findings: Nail dystrophy is seen in approximately 90% of patients, with fingernail involvement often preceding toenail involvement. Progressive nail dystrophy begins with ridging and longitudinal splitting. Progressive atrophy, thinning, pterygium, and distortion eventuate in small, rudimentary, or absent nails.

Mucosal findings: Mucosal leukoplakia occurs in approximately 80% of patients and typically involves the buccal mucosa, tongue, and oropharynx. The leukoplakia may become verrucous, and ulceration may occur. Patients also may have an increased prevalence and severity of periodontal disease.

Other mucosal sites may be involved (e.g., esophagus, urethral meatus, glans penis, lacrimal duct, conjunctiva, vagina, anus). Constriction and stenosis can occur at these sites, with subsequent development of dysphagia, dysuria, phimosis, and epiphora.

Bone marrow failure: Approximately 90% have peripheral cytopenia of one or more lineages. In some cases, this is the initial presentation, with a median age of onset of 10 years. Bone marrow failure is a major cause of death, with approximately 70% of deaths related to bleeding and opportunistic infections as a result of bone marrow failure.

Pulmonary complications: Approximately 20% of individuals with DKC develop pulmonary complications, including pulmonary fibrosis and abnormalities of pulmonary vasculature. The recommendation is that DKC patients avoid taking drugs with pulmonary toxicity (e.g., busulfan) and that they have their lungs shielded from radiation during BMT.

Increased risk of malignancy: Patients have an increased prevalence of malignant mucosal neoplasms, particularly squamous cell carcinoma of the mouth, nasopharynx, esophagus, rectum, vagina, or cervix. These often occur within sites of leukoplakia. The prevalence of squamous cell carcinoma of the skin is also increased. Other malignancies reported include Hodgkin lymphoma, adenocarcinoma of the gastrointestinal tract, and bronchial and laryngeal carcinoma. Malignancy tends to develop in the third decade of life.

Neurologic system findings: Patients may have learning difficulties and mental retardation.

Ophthalmic system findings: DKC reportedly is associated with conjunctivitis, blepharitides, and pterygium. Lacrimal duct stenosis resulting in epiphora (i.e., excessive tearing) occurs in approximately 80% of patients.

Skeletal system findings: Patients may have mandibular hypoplasia, osteoporosis, avascular necrosis, and scoliosis.

Gastrointestinal system findings: These may include esophageal webs, hepatosplenomegaly, enteropathy, and cirrhosis.

Genitourinary system findings:: Hypospastic testes, hypospadias, and ureteral stenosis are reported.

Female carriers: Female carriers of DKC may have subtle clinical features. One study showed that 3 of 20 female carriers had clinical features that included a single dystrophic nail, a patch of hypopigmentation, or mild leukoplakia.

Pathophysiology

Dyskeratosis congenita is a disorder of poor telomere maintenance[4] mainly due to a number of gene mutations that give rise to abnormal ribosome function, termed ribosomopathy. Specifically, the disease is related to one or more mutations which directly or indirectly affect the vertebrate telomerase RNA component (TERC).

Telomerase is a reverse transcriptase which maintains a specific repeat sequence of DNA, the telomere, during development. Telomeres are placed by telomerase on both ends of linear chromosomes as a way to protect linear DNA from general forms of chemical damage and to correct for the chromosomal end-shortening that occurs during normal DNA replication.[5] This end-shortening is the result of the eukaryotic DNA polymerases having no mechanism for synthesizing the final nucleotides present on the end of the "lagging strand" of double stranded DNA. DNA polymerase can only synthesize new DNA from an old DNA strand in the 5'→3' direction. Given that DNA has two strands that are complementary, one strand must be 5'→3' while the other is 3'→5'. This inability to synthesize in the 3'→5' directionality is compensated with the use of Okazaki fragments, short pieces of DNA that are synthesized 5'→3' from the 3'→5' as the replication fork moves. As DNA polymerase requires RNA primers for DNA binding in order to commence replication, each Okazaki fragment is thus preceded by an RNA primer on the strand being synthesized. When the end of the chromosome is reached, the final RNA primer is placed upon this nucleotide region, and it is inevitably removed. Unfortunately once the primer is removed, DNA polymerase is unable to synthesize the remaining bases.[5][6]

Sufferers of DKC have been shown to have a reduction in TERC levels invariably affecting the normal function of telomerase which maintains these telomeres.[4][7][8] With TERC levels down, telomere maintenance during development suffers accordingly. In humans, telomerase is inactive in most cell types after early development (except in extreme cases such as cancer).[9] Thus, if telomerase is not able to efficiently affect the DNA in the beginning of life, chromosomal instability becomes a grave possibility in individuals much earlier than would be expected.

A study shows that proliferative defects in DC skin keratinocytes are corrected by expression of the telomerase reverse transcriptase, TERT, or by activation of endogenous telomerase through expression of papillomavirus E6/E7 of the telomerase RNA component, TERC.[10]

Genetics

Of the components of the telomerase RNA component (TERC), one of key importance is the box H/ACA domain. This H/ACA domain is responsible for maturation and stability of TERC and therefore of telomerase as a whole. The mammalian H/ACA ribonucleoprotein contains four protein subunits: dyskerin, Gar1, Nop10, and Nhp2. Mutations in Nop10,[7] Nhp2[11] and dyskerin1[8] have all been shown to lead to DKC-like symptoms.

X-linked

The best characterized form of dyskeratosis congenita is a result of one or more mutations in the long arm of the X chromosome in the gene DKC1.[4][8] This results in the X-linked recessive form of the disease wherein the major protein affected is dyskerin. Of the five mutations described by Heiss and colleagues in Nature Genetics,[8] four were single nucleotide polymorphisms all resulting in the change of highly conserved amino acids. One case was an in-frame deletion resulting in the loss of a leucine residue, also conserved in mammals. In three of the cases, the specific amino acids affected (phenylalanine, proline, glycine) are found in the same locus in humans as they are in yeast (S. Cerevisiae) and the brown rat (R. Norvegicus).[8] This establishes the sequence conservation and importance of dyskerin within the eukaryotes. The relevant nature of dyskerin throughout most species is to catalyze the post-transcriptional pseudouridylation of specific uridines found in non-coding RNAs, such as ribosomal RNA (rRNA). Cbf5, the yeast analog of human dyskerin, is indeed known to be associated with the processing and maturation of rRNA.[4] In humans this role can be attributed to dyskerin.[8] Thus, the X-linked form of this disease may result in specific issues related to dysfunctional rRNA and perhaps a graver phenotype. Within the vertebrates, as opposed to single celled eukaryotes, dyskerin is a key component of the telomerase RNA component (TERC) in the form of the H/ACA motif.[9] This X-linked variety, like the Nop10 and Nhp2 mutations, demonstrates shortened telomeres as a result of lower TERC concentrations.

Autosomal dominant

3 genes: TERC, TERT, TINF2 The evidence supporting the importance of the H/ACA domain in human telomerase is abundant. At least one study[12] has shown that these mutations affect telomerase activity by negatively affecting pre-RNP assembly and maturation of human telomerase RNA. Nonetheless, mutations which directly affect the telomerase RNA components would presumably exist and should also cause premature aging or DKC-like symptoms. Indeed, three families with mutations in the human TERC gene have been studied with intriguing results.[4] In two of these families, two family-specific single nucleotide polymorphisms were present while in the other there persisted a large-scale deletion (821 base pairs of DNA) on chromosome 3 which includes 74 bases coding for a section of the H/ACA domain. These three different mutations result in a mild form of dyskeratosis congenita which uniquely follows an autosomal dominant pattern of inheritance. Premature graying, early dental loss, predisposition to skin cancer, as well as shortening of telomere length continue to be characteristic of this disease.

Autosomal recessive

6 genes: The true phenotype of DKC individuals may depend upon which protein has incurred a mutation. One documented autosomal recessive mutation[7] in a family that carries DKC has been found in Nop10. Specifically, the mutation is a change of base from cytosine to thymine in a highly conserved region of the Nop10 sequence. This mutation, on chromosome 15, results in an amino acid change from arginine to tryptophan. Homozygous recessive individuals show the symptoms of dyskeratosis congenita in full. As compared to age-matched normal individuals, those suffering from DKC have telomeres of a much shorter length. Furthermore, heterozygotes, those who have one normal allele and one coding for the disease, also show relatively shortened telomeres. The cause of this was determined to be a reduction in TERC levels in those with the Nop10 mutation. With TERC levels down, telomere maintenance, especially in development, would be presumed to suffer accordingly. This would lead to the telomere shortening described.[7]

Nhp2 mutations are similar in characterization to Nop10. These mutations are also autosomal recessive with three specific single-nucleotide polymorphisms being recognized which result in dyskeratosis congenita. Also like Nop10, individuals with these Nhp2 mutations have a reduction in the amount of telomerase RNA component (TERC) present in the cell. Again it can be presumed that a reduction in TERC results in aberrant telomere maintenance and thus shortened telomeres. Those homozygous recessive for mutations in Nhp2 do show shorter telomeres when compared with age-matched normal individuals.[11]

Predisposition to cancer

Susceptibility to cancer seems counterintuitive because in many known cancers reactivation of telomerase is actually a required step for malignancy to evolve (see telomere). In a disease where telomerase is affected, it does not seem to follow that cancer would be a complication to result. The authors note the paradoxical nature of cancer predisposition in individuals who seem to lack one of the required components for cancer to form. It is thought [4] that without functional telomerase, chromosomes will likely be attached together at their ends through the non-homologous end joining pathway. If this proves to be a common enough occurrence, malignancy even without telomerase present is possible.

Potential therapeutics

Recent research has used induced pluripotent stem cells to study disease mechanisms in humans, and discovered that the reprogramming of somatic cells restores telomere elongation in dyskeratosis congenita (DKC) cells despite the genetic lesions that affect telomerase. The reprogrammed DKC cells were able to overcome a critical limitation in TERC levels and restored function (telomere maintenance and self-renewal). Therapeutically, methods aimed at increasing TERC expression could prove beneficial in DKC.[13]

Prognosis

DC is associated with shorter life expectancy, but many live to at least age 60.[14]

Support groups

There are a few support groups for dyskeratosis congenita patients and families, including Dyskeratosis Congenita Outreach, Inc. in North America and Dyskeratosis Congenita Outreach Pacific for Australia and New Zealand.

See also

References

  1. Online Mendelian Inheritance in Man (OMIM) 305000
  2. James, William; Berger, Timothy; Elston, Dirk (2005). Andrews' Diseases of the Skin: Clinical Dermatology. (10th ed.). Saunders. ISBN 0-7216-2921-0.
  3. 1 2 3 Online Mendelian Inheritance in Man (OMIM) 127550
  4. 1 2 3 4 5 6 Vulliamy T, Marrone A, Goldman F, et al. (September 2001). "The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.". Nature. 413 (6854): 432–435. PMID 11574891. doi:10.1038/35096585.
  5. 1 2 Greider, CW. (May 1996). "Telomere length regulation.". Annu. Rev. Biochem. 65: 337–365. PMID 8811183. doi:10.1146/annurev.bi.65.070196.002005.
  6. Wason, James; et al. (2004). Molecular Biology of the Gene. 5th ed. Annu. Rev. Biochem. San Francisco: Pearson Education, Inc.
  7. 1 2 3 4 Walne AJ, Vulliamy T, Marrone A, et al. (July 2007). "Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10.". Hum Mol Genet. 16 (13): 1619–29. PMC 2882227Freely accessible. PMID 17507419. doi:10.1093/hmg/ddm111.
  8. 1 2 3 4 5 6 Heiss NS, Knight SW, Vulliamy TJ, et al. (May 1998). "X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions.". Nat. Genet. 19 (1): 32–38. PMID 9590285. doi:10.1038/ng0598-32.
  9. 1 2 Wong J, Collins K (October 2006). "Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita.". Genes Dev. 20 (20): 2848–2858. PMC 1619937Freely accessible. PMID 17015423. doi:10.1101/gad.1476206.
  10. Gourronc FA, Robertson MM, Herrig AK, Lansdorp PM, Goldman FD, Klingelhutz AJ (2010). "Proliferative defects in dyskeratosis congenita skin keratinocytes are corrected by expression of the telomerase reverse transcriptase, TERT, or by activation of endogenous telomerase through expression of papillomavirus E6/E7 or the telomerase RNA component, TERC". Experimental Dermatology. 19: 279–288. doi:10.1111/j.1600-0625.2009.00916.x.
  11. 1 2 Vulliamy T, Beswick R, Kirwan M, et al. (June 2008). "Mutations in the telomerase component Nhp2 cause the premature ageing syndrome dyskeratosis congenita.". Proc Natl Acad Sci USA. 105 (23): 8073–8. PMC 2430361Freely accessible. PMID 18523010. doi:10.1073/pnas.0800042105.
  12. Trahan C, Dragon F (February 2009). "Dyskeratosis congenita mutations in the H/ACA domain of human telomerase RNA affect its assembly into a pre-RNP.". RNA. 15 (2): 235–43. PMC 2648702Freely accessible. PMID 19095616. doi:10.1261/rna.1354009.
  13. Agarwal; et al. (2010). ": Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients". Nature. 464 (7286): 292–296. PMC 3058620Freely accessible. PMID 20164838. doi:10.1038/nature08792.
  14. Alter, Blanche P.; Rosenberg, Philip S.; Giri, Neelam; Baerlocher, Gabriela M.; Lansdorp, Peter M.; Savage, Sharon A. (2016-11-01). "Telomere length is associated with disease severity and declines with age in dyskeratosis congenita". Haematologica. 97 (3): 353–359. ISSN 0390-6078. PMC 3291588Freely accessible. PMID 22058220. doi:10.3324/haematol.2011.055269.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.