Cloud chamber

A Cloud Chamber, also known as a Wilson Cloud Chamber, is a particle detector used for visualizing the passage of ionizing radiation.

A cloud chamber consists of a sealed environment containing a supersaturated vapor of water or alcohol. An energetic charged particle (for example, an alpha or beta particle) interacts with the gaseous mixture by knocking electrons off gas molecules via electrostatic forces during collisions, resulting in a trail of ionized gas particles. The resulting ions act as condensation centers around which a mist-like trail of small droplets form if the gas mixture is at the point of condensation. These droplets are visible as a "cloud" track that persist for several seconds while the droplets fall through the vapor. These tracks have characteristic shapes. For example, an alpha particle track is thick and straight, while an electron track is wispy and shows more evidence of deflections by collisions.

track of subatomic particle moving upward through cloud chamber and bending left (an electron would have turned right)
Fig. 1: Cloud chamber photograph of the first positron ever observed by C. Anderson.

Cloud chambers played a prominent role in the experimental particle physics from the 1920s to the 1950s, until the advent of the bubble chamber. In particular, the discoveries of the positron in 1932 (see Fig. 1) and the muon in 1936, both by Carl Anderson (awarded a Nobel Prize in Physics in 1936), used cloud chambers. Discovery of the kaon by George Rochester and Clifford Charles Butler in 1947, also was made using a cloud chamber as the detector.[1]. In each case, cosmic rays were the source of ionizing radiation.

Invention

Charles Thomson Rees Wilson (1869–1959), a Scottish physicist, is credited with inventing the cloud chamber. Inspired by sightings of the Brocken spectre while working on the summit of Ben Nevis in 1894, he began to develop expansion chambers for studying cloud formation and optical phenomena in moist air. Very rapidly he discovered that ions could act as centers for water droplet formation in such chambers. He pursued the application of this discovery and perfected the first cloud chamber in 1911. In Wilson's original chamber the air inside the sealed device was saturated with water vapor, then a diaphragm was used to expand the air inside the chamber (adiabatic expansion), cooling the air and starting to condense water vapor. Hence the name expansion cloud chamber is used. When an ionizing particle passes through the chamber, water vapor condenses on the resulting ions and the trail of the particle is visible in the vapor cloud. Wilson, along with Arthur Compton, received the Nobel Prize in Physics in 1927 for his work on the cloud chamber.[2] This kind of chamber is also called a Pulsed Chamber because the conditions for operation are not continuously maintained. Further developments were made by Patrick Blackett who utilised a stiff spring to expand and compress the chamber very rapidly, making the chamber sensitive to particles several times a second. A cine film was used to record the images.

The diffusion cloud chamber was developed in 1936 by Alexander Langsdorf.[3] This chamber differs from the expansion cloud chamber in that it is continuously sensitized to radiation, and in that the bottom must be cooled to a rather low temperature, generally colder than −26 °C (−15 °F). Instead of water vapor, alcohol is used because of its lower freezing point. Cloud chambers cooled by dry ice or Peltier effect thermoelectric cooling are a common demonstration and hobbyist devices; the alcohol used in them is commonly isopropyl alcohol or methylated spirit.

Structure and operation

Diffusion-type cloud chambers will be discussed here. A simple cloud chamber consists of the sealed environment, a warm top plate and a cold bottom plate. It requires a source of liquid alcohol at the warm side of the chamber where the liquid evaporates, forming a vapor that cools as it falls through the gas and condenses on the cold bottom plate. Some sort of ionizing radiation is needed.

Fig. 2: In a diffusion cloud chamber, a 5.3 MeV alpha-particle track from a Pb-210 pin source near Point (1) undergoes Rutherford scattering near Point (2), deflecting by angle theta of about 30 degrees. It scatters once again near Point (3), and finally comes to rest in the gas. The target nucleus in the chamber gas could have been a nitrogen, oxygen, carbon, or hydrogen nucleus. It received enough kinetic energy in the elastic collision to cause a short visible recoiling track near Point (2). (The scale is in centimeters.) See video in Ref.[4].

Methanol, isopropanol, or other alcohol vapor saturates the chamber. The alcohol falls as it cools down and the cold condenser provides a steep temperature gradient. The result is a supersaturated environment. As energetic charged particles pass through the gas they leave ionization trails. The alcohol vapor condenses around gaseous ion trails left behind by the ionizing particles. This occurs because alcohol and water molecules are polar, resulting in a net attractive force toward a nearby free charge. The result is cloud formation, seen in the cloud chamber by the presence of droplets falling down to the condenser. Since the tracks are emitted radially out from the source, their point of origin can easily be determined.[5] (See Fig. 2. for example.)

Image taken in the Pic du Midi at 2877 m in a Phywe PJ45 cloud chamber (size of surface is 45 x 45 cm). This rare picture shows in a single shot the 4 particles that are detectable in a cloud chamber : proton, electron, muon (probably) and alpha
Cloud chamber with visible tracks from ionizing radiation (short, thick: α-particles; long, thin: β-particles). See also Animated Version
Example of watercooled thermoelectric cloud chamber
Alpha particles from a Radium source in a cloud chamber
Radon-220 decay in a cloud chamber
Alpha particles and electrons (deflected by a magnetic field) from a thorium rod in a cloud chamber
Radioactivity of a Thorite mineral seen in a cloud chamber

Just above the cold condenser plate there is an area of the chamber which is sensitive to radioactive tracks. At this height, most of the alcohol has not condensed. This means that the ion trail left by the radioactive particles provides an optimal trigger for condensation and cloud formation. This sensitive area is increased in height by employing a steep temperature gradient, little convection, and very stable conditions.[5] A strong electric field is often used to draw cloud tracks down to the sensitive region of the chamber and increase the sensitivity of the chamber. The electric field can also serve to prevent large amounts of background "rain" from obscuring the sensitive region of the chamber, caused by condensation forming above the sensitive area of the chamber. This means that ion trails left by radioactive particles are obscured by constant precipitation. The black background makes it easier to observe cloud tracks.[5]

Before tracks can be visible, a tangential light source is needed. This illuminates the white droplets against the black background. Drops should be viewed from a horizontal position. If the chamber is working correctly, tiny droplets should be seen condensing. Often this condensation is not apparent until a shallow pool of alcohol is formed at the condenser plate. The tracks become much more obvious once temperatures and conditions have stabilized in the chamber. This requires the elimination of any significant drift currents (poor chamber sealing).[5]

If a magnetic field is applied across the cloud chamber, positively and negatively charged particles will curve in opposite directions, according to the Lorentz force law; strong-enough fields are difficult to achieve, however, with small hobbyist setups.

Other particle detectors

The bubble chamber was invented by Donald A. Glaser of the United States in 1952, and for this, he was awarded the Nobel Prize in Physics in 1960. The bubble chamber similarly reveals the tracks of subatomic particles, but as trails of bubbles in a superheated liquid, usually liquid hydrogen. Bubble chambers can be made physically larger than cloud chambers, and since they are filled with much-denser liquid material, they reveal the tracks of much more energetic particles. These factors rapidly made the bubble chamber the predominant particle detector for a number of decades, so that cloud chambers were effectively superseded in fundamental research by the start of the 1960s.[6]

A spark chamber is an electrical device that uses a grid of uninsulated electric wires in a chamber, with high voltages applied between the wires. Energetic charged particles cause ionization of the gas along the path of the particle in the same was as in the Wilson cloud chamber, but in this case the ambient electric fields are high enough to precipitate full-scale gas breakdown in the form of sparks at the position of the initial ionization. The presence and location of these sparks is then registered electrically, and the information is stored for later analysis, such as by a digital computer.

Similar condensation effects can be observed as Wilson clouds, also called condensation clouds, at large explosions in humid air and other Prandtl–Glauert singularity effects.

See also

Notes

  1. "The Nobel Prize in Physics 1936". Nobelprize.org. Retrieved 7 April 2015.
  2. "The Nobel Prize in Physics 1927". www.nobelprize.org. Retrieved 2015-04-07.
  3. Frisch, O.R. Progress in Nuclear Physics, Band 3. p. 1.
  4. YouTube: "A Diffusion Cloud Chamber"
  5. 1 2 3 4 Zani, G. Dept. of Physics, Brown University, RI USA. “Wilson Cloud Chamber”. Updated 05/13/2016.
  6. "The Nobel Prize in Physics 1960". www.nobelprize.org. Retrieved 2015-04-07.

References

Wikimedia Commons has media related to Cloud chambers.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.