Weyl−Lewis−Papapetrou coordinates
General relativity | ||||||
---|---|---|---|---|---|---|
Fundamental concepts |
||||||
Phenomena |
||||||
|
||||||
In general relativity, the Weyl−Lewis−Papapetrou coordinates are a set of coordinates, used in the solutions to the vacuum region surrounding an axisymmetric distribution of mass–energy. They are named for Hermann Weyl, T. Lewis, and Achilles Papapetrou.[1][2][3]
Details
The square of the line element is of the form:[4]
where (t, ρ, ϕ, z) are the cylindrical Weyl−Lewis−Papapetrou coordinates in 3 + 1 spacetime, and λ, ν, ω, and B, are unknown functions of the spatial non-angular coordinates ρ and z only. Different authors define the functions of the coordinates differently.
See also
- Introduction to the mathematics of general relativity
- Stress–energy tensor
- Metric tensor (general relativity)
- Relativistic angular momentum
- Weyl metrics
References
- ↑ Weyl, H., "Zur Gravitationstheorie," Ann. der Physik 54 (1917), 117–145.
- ↑ T. Lewis, "Some special solutions of the equations of axially symmetric gravitational fields," Roy. Soc., Proc. 136, 176–92 (May 2, 1932).
- ↑ A. Papapetrou, "A static solution of the equations of the gravitatinal field for an arbitrary charge-distribution," Proc. R. Irish Acad. A 52, 11 (1948).
- ↑ Jiří Bičák; O. Semerák; Jiří Podolský; Martin Žofka (2002). Gravitation, Following the Prague Inspiration: A Volume in Celebration of the 60th Birthday of Jiří Bičák. World Scientific. p. 122. ISBN 981-238-093-0.
Further reading
Selected papers
- J. Marek; A. Sloane (1979). "A finite rotating body in general relativity". Il Nuovo Cimento B Series 11. 51 (1). pp. 45–52.
- L. Richterek; J. Novotny; J. Horsky (2002). "Einstein−Maxwell fields generated from the gamma-metric and their limits" (PDF). Czech.J.Phys. 52. p. 2. arXiv:gr-qc/0209094v1 . doi:10.1023/A:1020581415399.
- M. Sharif (2007). "Energy-Momentum Distribution of the Weyl−Lewis−Papapetrou and the Levi-Civita Metrics" (PDF). Brazilian Journal of Physics. 37.
- A. Sloane (1978). "The axially symmetric stationary vacuum field equations in Einstein's theory of general relativity". Aust. J. Phys. 31. CSIRO. p. 429. Bibcode:1978AuJPh..31..427S.
Selected books
- J. L. Friedman; N. Stergioulas (2013). Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press. p. 151. ISBN 052-187-254-5.
- A. Macías; J. L. Cervantes-Cota; C. Lämmerzahl (2001). Exact Solutions and Scalar Fields in Gravity: Recent Developments. Springer. p. 39. ISBN 030-646-618-X.
- A. Das; A. DeBenedictis (2012). The General Theory of Relativity: A Mathematical Exposition. Springer. p. 317. ISBN 146-143-658-3.
- G. S. Hall; J. R. Pulham (1996). General relativity: proceedings of the forty sixth Scottish Universities summer school in physics, Aberdeen, July 1995. SUSSP proceedings. 46. Scottish Universities Summer School in Physics. pp. 65, 73, 78. ISBN 075-030-395-6.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.