Wente torus

In differential geometry, a Wente torus is an immersed torus in of constant mean curvature, discovered by Henry C. Wente (1986). It is a counterexample to the conjecture of Heinz Hopf that every closed, compact, constant-mean-curvature surface is a sphere (though this is true if the surface is embedded). There are similar examples known for every positive genus.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.