Wave power

Azura at the US Navy’s Wave Energy Test Site (WETS) on Oahu
The mWave converter by Bombora Wave Power

Wave power is the transport of energy by wind waves, and the capture of that energy to do useful work – for example, electricity generation, water desalination, or the pumping of water (into reservoirs). A machine able to exploit wave power is generally known as a wave energy converter (WEC).

Wave power is distinct from the diurnal flux of tidal power and the steady gyre of ocean currents. Wave-power generation is not currently a widely employed commercial technology, although there have been attempts to use it since at least 1890.[1] In 2008, the first experimental wave farm was opened in Portugal, at the Aguçadoura Wave Park.[2]

Physical concepts

When an object bobs up and down on a ripple in a pond, it follows approximately an elliptical trajectory.
Motion of a particle in an ocean wave.
A = At deep water. The elliptical motion of fluid particles decreases rapidly with increasing depth below the surface.
B = At shallow water (ocean floor is now at B). The elliptical movement of a fluid particle flattens with decreasing depth.
1 = Propagation direction.
2 = Wave crest.
3 = Wave trough.
Photograph of the elliptical trajectories of water particles under a – progressive and periodic – surface gravity wave in a wave flume. The wave conditions are: mean water depth d = 2.50 ft (0.76 m), wave height H = 0.339 ft (0.103 m), wavelength λ = 6.42 ft (1.96 m), period T = 1.12 s.[3]

Waves are generated by wind passing over the surface of the sea. As long as the waves propagate slower than the wind speed just above the waves, there is an energy transfer from the wind to the waves. Both air pressure differences between the upwind and the lee side of a wave crest, as well as friction on the water surface by the wind, making the water to go into the shear stress causes the growth of the waves.[4]

Wave height is determined by wind speed, the duration of time the wind has been blowing, fetch (the distance over which the wind excites the waves) and by the depth and topography of the seafloor (which can focus or disperse the energy of the waves). A given wind speed has a matching practical limit over which time or distance will not produce larger waves. When this limit has been reached the sea is said to be "fully developed".

In general, larger waves are more powerful but wave power is also determined by wave speed, wavelength, and water density.

Oscillatory motion is highest at the surface and diminishes exponentially with depth. However, for standing waves (clapotis) near a reflecting coast, wave energy is also present as pressure oscillations at great depth, producing microseisms.[4] These pressure fluctuations at greater depth are too small to be interesting from the point of view of wave power.

The waves propagate on the ocean surface, and the wave energy is also transported horizontally with the group velocity. The mean transport rate of the wave energy through a vertical plane of unit width, parallel to a wave crest, is called the wave energy flux (or wave power, which must not be confused with the actual power generated by a wave power device).

Wave power formula

In deep water where the water depth is larger than half the wavelength, the wave energy flux is[lower-alpha 1]

with P the wave energy flux per unit of wave-crest length, Hm0 the significant wave height, Te the wave energy period, ρ the water density and g the acceleration by gravity. The above formula states that wave power is proportional to the wave energy period and to the square of the wave height. When the significant wave height is given in metres, and the wave period in seconds, the result is the wave power in kilowatts (kW) per metre of wavefront length.[5][6][7][8]

Example: Consider moderate ocean swells, in deep water, a few km off a coastline, with a wave height of 3 m and a wave energy period of 8 seconds. Using the formula to solve for power, we get

meaning there are 36 kilowatts of power potential per meter of wave crest.

In major storms, the largest waves offshore are about 15 meters high and have a period of about 15 seconds. According to the above formula, such waves carry about 1.7 MW of power across each metre of wavefront.

An effective wave power device captures as much as possible of the wave energy flux. As a result, the waves will be of lower height in the region behind the wave power device.

Wave energy and wave-energy flux

In a sea state, the average(mean) energy density per unit area of gravity waves on the water surface is proportional to the wave height squared, according to linear wave theory:[4][9]

[lower-alpha 2][10]

where E is the mean wave energy density per unit horizontal area (J/m2), the sum of kinetic and potential energy density per unit horizontal area. The potential energy density is equal to the kinetic energy,[4] both contributing half to the wave energy density E, as can be expected from the equipartition theorem. In ocean waves, surface tension effects are negligible for wavelengths above a few decimetres.

As the waves propagate, their energy is transported. The energy transport velocity is the group velocity. As a result, the wave energy flux, through a vertical plane of unit width perpendicular to the wave propagation direction, is equal to:[11][4]

with cg the group velocity (m/s). Due to the dispersion relation for water waves under the action of gravity, the group velocity depends on the wavelength λ, or equivalently, on the wave period T. Further, the dispersion relation is a function of the water depth h. As a result, the group velocity behaves differently in the limits of deep and shallow water, and at intermediate depths:[4][9]

Deep-water characteristics and opportunities

Deep water corresponds with a water depth larger than half the wavelength, which is the common situation in the sea and ocean. In deep water, longer-period waves propagate faster and transport their energy faster. The deep-water group velocity is half the phase velocity. In shallow water, for wavelengths larger than about twenty times the water depth, as found quite often near the coast, the group velocity is equal to the phase velocity.[12]

History

The first known patent to use energy from ocean waves dates back to 1799, and was filed in Paris by Girard and his son.[13] An early application of wave power was a device constructed around 1910 by Bochaux-Praceique to light and power his house at Royan, near Bordeaux in France.[14] It appears that this was the first oscillating water-column type of wave-energy device.[15] From 1855 to 1973 there were already 340 patents filed in the UK alone.[13]

Modern scientific pursuit of wave energy was pioneered by Yoshio Masuda's experiments in the 1940s.[16] He tested various concepts of wave-energy devices at sea, with several hundred units used to power navigation lights. Among these was the concept of extracting power from the angular motion at the joints of an articulated raft, which was proposed in the 1950s by Masuda.[17]

A renewed interest in wave energy was motivated by the oil crisis in 1973. A number of university researchers re-examined the potential to generate energy from ocean waves, among whom notably were Stephen Salter from the University of Edinburgh, Kjell Budal and Johannes Falnes from Norwegian Institute of Technology (now merged into Norwegian University of Science and Technology), Michael E. McCormick from U.S. Naval Academy, David Evans from Bristol University, Michael French from University of Lancaster, Nick Newman and C. C. Mei from MIT.

Stephen Salter's 1974 invention became known as Salter's duck or nodding duck, although it was officially referred to as the Edinburgh Duck. In small scale controlled tests, the Duck's curved cam-like body can stop 90% of wave motion and can convert 90% of that to electricity giving 81% efficiency.[18]

In the 1980s, as the oil price went down, wave-energy funding was drastically reduced. Nevertheless, a few first-generation prototypes were tested at sea. More recently, following the issue of climate change, there is again a growing interest worldwide for renewable energy, including wave energy.[19]

The world's first marine energy test facility was established in 2003 to kick start the development of a wave and tidal energy industry in the UK. Based in Orkney, Scotland, the European Marine Energy Centre (EMEC) has supported the deployment of more wave and tidal energy devices than at any other single site in the world. EMEC provides a variety of test sites in real sea conditions. Its grid-connected wave test site is situated at Billia Croo, on the western edge of the Orkney mainland, and is subject to the full force of the Atlantic Ocean with seas as high as 19 metres recorded at the site. Wave energy developers currently testing at the centre include Aquamarine Power, Pelamis Wave Power, ScottishPower Renewables and Wello.[20]

Modern technology

Wave power devices are generally categorized by the method used to capture the energy of the waves, by location and by the power take-off system. Locations are shoreline, nearshore and offshore. Types of power take-off include: hydraulic ram, elastomeric hose pump, pump-to-shore, hydroelectric turbine, air turbine,[21] and linear electrical generator. When evaluating wave energy as a technology type, it is important to distinguish between the four most common approaches: point absorber buoys, surface attenuators, oscillating water columns, and overtopping devices.

Generic wave energy concepts: 1. Point absorber, 2. Attenuator, 3. Oscillating wave surge converter, 4. Oscillating water column, 5. Overtopping device, 6. Submerged pressure differential

Point absorber buoy

This device floats on the surface of the water, held in place by cables connected to the seabed. Buoys use the rise and fall of swells to drive hydraulic pumps and generate electricity. EMF generated by electrical transmission cables and acoustics of these devices may be a concern for marine organisms. The presence of the buoys may affect fish, marine mammals, and birds as potential minor collision risk and roosting sites. Potential also exists for entanglement in mooring lines. Energy removed from the waves may also affect the shoreline, resulting in a recommendation that sites remain a considerable distance from the shore.[22]

Surface attenuator

These devices act similarly to point absorber buoys, with multiple floating segments connected to one another and are oriented perpendicular to incoming waves. A flexing motion is created by swells that drive hydraulic pumps to generate electricity. Environmental effects are similar to those of point absorber buoys, with an additional concern that organisms could be pinched in the joints.[22]

Oscillating wave surge converter

These devices typically have one end fixed to a structure or the seabed while the other end is free to move. Energy is collected from the relative motion of the body compared to the fixed point. Oscillating wave surge converters often come in the form of floats, flaps, or membranes. Environmental concerns include minor risk of collision, artificial reefing near the fixed point, EMF effects from subsea cables, and energy removal effecting sediment transport.[22] Some of these designs incorporate parabolic reflectors as a means of increasing the wave energy at the point of capture. These capture systems use the rise and fall motion of waves to capture energy.[23] Once the wave energy is captured at a wave source, power must be carried to the point of use or to a connection to the electrical grid by transmission power cables.[24]

Oscillating water column

Oscillating Water Column devices can be located on shore or in deeper waters offshore. With an air chamber integrated into the device, swells compress air in the chambers forcing air through an air turbine to create electricity.[25] Significant noise is produced as air is pushed through the turbines, potentially affecting birds and other marine organisms within the vicinity of the device. There is also concern about marine organisms getting trapped or entangled within the air chambers.[22]

Overtopping device

Overtopping devices are long structures that use wave velocity to fill a reservoir to a greater water level than the surrounding ocean. The potential energy in the reservoir height is then captured with low-head turbines. Devices can be either on shore or floating offshore. Floating devices will have environmental concerns about the mooring system affecting benthic organisms, organisms becoming entangled, or EMF effects produced from subsea cables. There is also some concern regarding low levels of turbine noise and wave energy removal affecting the nearfield habitat.[22]

Submerged pressure differential

Submerged pressure differential based converters are a comparatively newer technology [26] utilizing flexible (usually reinforced rubber) membranes to extract wave energy. These converters use the difference in pressure at different locations below a wave to produce a pressure difference within a closed power take-off fluid system. This pressure difference is usually used to produce flow, which drives a turbine and electrical generator. Submerged pressure differential converters frequently use flexible membranes as the working surface between the ocean and the power take-off system. Membranes offer the advantage over rigid structures of being compliant and low mass, which can produce more direct coupling with the wave’s energy. Their compliant nature also allows for large changes in the geometry of the working surface, which can be used to tune the response of the converter for specific wave conditions and to protect it from excessive loads in extreme conditions.

A submerged converter may be positioned either on the sea floor or in midwater. In both cases, the converter is protected from water impact loads which can occur at the free surface. Wave loads also diminish in non-linear proportion to the distance below the free surface. This means that by optimizing the depth of submergence for such a converter, a compromise between protection from extreme loads and access to wave energy can be found. Submerged WECs also have the potential to reduce the impact on marine amenity and navigation, as they are not at the surface. Example's of submerged pressure differential converters include M3 Wave and Bombora Wave Power's mWave.

Environmental effects

Common environmental concerns associated with marine energy developments include:

The Tethys database provides access to scientific literature and general information on the potential environmental effects of wave energy.[27]

Potential

The worldwide resource of wave energy has been estimated to be greater than 2 TW.[28] Locations with the most potential for wave power include the western seaboard of Europe, the northern coast of the UK, and the Pacific coastlines of North and South America, Southern Africa, Australia, and New Zealand. The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter.

World wave energy resource map

Challenges

There is a potential impact on the marine environment. Noise pollution, for example, could have negative impact if not monitored, although the noise and visible impact of each design vary greatly.[7] Other biophysical impacts (flora and fauna, sediment regimes and water column structure and flows) of scaling up the technology is being studied.[29] In terms of socio-economic challenges, wave farms can result in the displacement of commercial and recreational fishermen from productive fishing grounds, can change the pattern of beach sand nourishment, and may represent hazards to safe navigation.[30] Waves generate about 2,700 gigawatts of power. Of those 2,700 gigawatts, only about 500 gigawatts can be captured with the current technology.[23]

Wave farms

Portugal

United Kingdom

Australia

United States

Patents

See also

Notes

  1. The energy flux is with the group velocity, see Herbich, John B. (2000). Handbook of coastal engineering. McGraw-Hill Professional. A.117, Eq. (12). ISBN 978-0-07-134402-9. The group velocity is , see the collapsed table "Properties of gravity waves on the surface of deep water, shallow water and at intermediate depth, according to linear wave theory" in the section "Wave energy and wave energy flux" below.
  2. Here, the factor for random waves is 116, as opposed to 18 for periodic waves – as explained hereafter. For a small-amplitude sinusoidal wave with wave amplitude the wave energy density per unit horizontal area is or using the wave height for sinusoidal waves. In terms of the variance of the surface elevation the energy density is . Turning to random waves, the last formulation of the wave energy equation in terms of is also valid (Holthuijsen, 2007, p. 40), due to Parseval's theorem. Further, the significant wave height is defined as , leading to the factor 116 in the wave energy density per unit horizontal area.
  3. For determining the group velocity the angular frequency ω is considered as a function of the wavenumber k, or equivalently, the period T as a function of the wavelength λ.

References

  1. Christine Miller (August 2004). "Wave and Tidal Energy Experiments in San Francisco and Santa Cruz". Retrieved 2008-08-16.
  2. Joao Lima. Babcock, EDP and Efacec to Collaborate on Wave Energy projects Bloomberg, September 23, 2008.
  3. Figure 6 from: Wiegel, R.L.; Johnson, J.W. (1950), "Elements of wave theory", Proceedings 1st International Conference on Coastal Engineering, Long Beach, California: ASCE, pp. 5–21
  4. 1 2 3 4 5 6 Phillips, O.M. (1977). The dynamics of the upper ocean (2nd ed.). Cambridge University Press. ISBN 0-521-29801-6.
  5. Tucker, M.J.; Pitt, E.G. (2001). "2". In Bhattacharyya, R.; McCormick, M.E. Waves in ocean engineering (1st ed.). Oxford: Elsevier. pp. 35–36. ISBN 0080435661.
  6. "Wave Power". University of Strathclyde. Retrieved 2008-11-02.
  7. 1 2 "Wave Energy Potential on the U.S. Outer Continental Shelf" (PDF). United States Department of the Interior. Retrieved 2008-10-17.
  8. Academic Study: Matching Renewable Electricity Generation with Demand: Full Report. Scotland.gov.uk.
  9. 1 2 Goda, Y. (2000). Random Seas and Design of Maritime Structures. World Scientific. ISBN 978-981-02-3256-6.
  10. Holthuijsen, Leo H. (2007). Waves in oceanic and coastal waters. Cambridge: Cambridge University Press. ISBN 0-521-86028-8.
  11. Reynolds, O. (1877). "On the rate of progression of groups of waves and the rate at which energy is transmitted by waves". Nature. 16: 343–44. Bibcode:1877Natur..16R.341.. doi:10.1038/016341c0.
    Lord Rayleigh (J. W. Strutt) (1877). "On progressive waves". Proceedings of the London Mathematical Society. 9 (1): 21–26. doi:10.1112/plms/s1-9.1.21. Reprinted as Appendix in: Theory of Sound 1, MacMillan, 2nd revised edition, 1894.
  12. R. G. Dean & R. A. Dalrymple (1991). Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering. 2. World Scientific, Singapore. ISBN 978-981-02-0420-4. See page 64–65.
  13. 1 2 Clément; et al. (2002). "Wave energy in Europe: current status and perspectives". Renewable and Sustainable Energy Reviews. 6 (5): 405–431. doi:10.1016/S1364-0321(02)00009-6.
  14. "The Development of Wave Power" (PDF). Retrieved 2009-12-18.
  15. Morris-Thomas; Irvin, Rohan J.; Thiagarajan, Krish P.; et al. (2007). "An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column". Journal of Offshore Mechanics and Arctic Engineering. 129 (4): 273–278. doi:10.1115/1.2426992.
  16. "Wave Energy Research and Development at JAMSTEC". Archived from the original on July 1, 2008. Retrieved 2009-12-18.
  17. Farley, F. J. M. & Rainey, R. C. T. (2006). "Radical design options for wave-profiling wave energy converters" (PDF). International Workshop on Water Waves and Floating Bodies. Loughborough. Retrieved 2009-12-18.
  18. "Edinburgh Wave Energy Project" (PDF). University of Edinburgh. Retrieved 2008-10-22.
  19. Falnes, J. (2007). "A review of wave-energy extraction". Marine Structures. 20 (4): 185–201. doi:10.1016/j.marstruc.2007.09.001.
  20. http://www.emec.org.uk
  21. Embedded Shoreline Devices and Uses as Power Generation Sources Kimball, Kelly, November 2003
  22. 1 2 3 4 5 "Tethys".
  23. 1 2 McCormick, Michael E.; Ertekin, R. Cengiz (2009). "Renewable sea power: Waves, tides, and thermals – new research funding seeks to put them to work for us". Mechanical Engineering. ASME. 131 (5): 36–39.
  24. Underwater Cable an Alternative to Electrical Towers, Matthew L. Wald, New York Times, 2010-03-16. Retrieved 2010-03-18.
  25. "Extracting Energy From Ocean Waves". Retrieved 23 April 2015.
  26. Kurniawan, Adi; Greaves, Deborah; Chaplin, John (2014-12-08). "Wave energy devices with compressible volumes". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 470 (2172): 20140559. ISSN 1364-5021. PMC 4241014Freely accessible. PMID 25484609. doi:10.1098/rspa.2014.0559.
  27. "Tethys".
  28. Gunn, Kester; Stock-Williams, Clym (August 2012). "Quantifying the global wave power resource". Renewable Energy. Elsevier. 44: 296–304. doi:10.1016/j.renene.2012.01.101. Retrieved 27 February 2015.
  29. Marine Renewable Energy Programme, NERC Retrieved 2011-08-01
  30. Steven Hackett:Economic and Social Considerations for Wave Energy Development in California CEC Report Nov 2008 Ch2, pp22-44 California Energy Commission|Retrieved 2008-12-14
  31. "First Electricity Generation in Portugal".
  32. "23 de Setembro de 2008". Government of Portugal. Retrieved 2008-09-24.
  33. Jha, Alok (September 25, 2008). "Making waves: UK firm harnesses power of the sea ... in Portugal". The Guardian. London. Retrieved 2008-10-09.
  34. "Pelamis Sinks Portugal Wave Power". Cleantech. Retrieved 2016-09-15.
  35. Joao Lima (September 23, 2008). "Babcock, EDP and Efacec to Collaborate on Wave Energy Projects". Bloomberg Television. Retrieved 2008-09-24.
  36. Fyall, Jenny (May 19, 2010). "600ft 'sea snake' to harness power of Scotland". The Scotsman. Edinburgh. pp. 10–11. Retrieved 2010-05-19.
  37. James Sturcke (April 26, 2007). "Wave farm wins £21.5m grant". The Guardian. London. Retrieved 2009-04-08.
  38. "Tender problems delaying Wave Hub". BBC News. April 2, 2008. Retrieved 2009-04-08.
  39. "Go-ahead for £28m Cornish wave farm". The Guardian. London. September 17, 2007. Retrieved 2008-10-12.
  40. Bombora Wave Power (Bombora Wave Power Pty Ltd)
  41. mWave
  42. "Renewable Power from the Ocean's Waves". CETO Wave Power. Retrieved November 9, 2010.
  43. Keith Orchison (October 7, 2010). "Wave of the future needs investment". The Australian. Retrieved November 9, 2010.
  44. "WA wave energy project turned on to power naval base at Garden Island". ABC News Online. Australian Broadcasting Corporation. 18 February 2015. Retrieved 20 February 2015.
  45. Downing, Louise (February 19, 2015). "Carnegie Connects First Wave Power Machine to Grid in Australia". BloombergBusiness. Bloomberg. Retrieved 20 February 2015.
  46. Lockheed Martin, Woodside, Ocean Power Technologies in wave power project, Portland Victoria Wave Farm
  47. "Oceanlinx 1MW Commercial Wave Energy Demonstrator". ARENA. Retrieved 27 November 2013.
  48. America’s Premiere Wave Power Farm Sets Sail, Reedsport Wave Farm
  49. US catching up with Europe - Forbes October 3, 2012
  50. Reedsport project delayed due to early onset of winter weather - OregonLive Oct 2012
  51. oregonlive.com Oregon wave energy stalls off the coast of Reedsport, 30 August 2013
  52. Prototype Testing Could Help Prove a Promising Source
  53. Graham, Karen." First wave-produced power in U.S. goes online in Hawaii" Digital Journal. 19 September 2016. Web Accessed 22 September 2016.
  54. FreePatentsoOline.com Wave energy converters utilizing pressure differences, 11 April 2004

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.