List of unsolved problems in mathematics

Since the Renaissance, every century has seen the solution of more mathematical problems than the century before, and yet many mathematical problems, both major and minor, still remain unsolved.[1] Prizes are often awarded for the solution to a long-standing problem, and lists of unsolved problems (such as the list of Millennium Prize Problems) receive considerable attention. Unsolved problems remain in multiple domains, including physics, computer science, algebra, additive and algebraic number theories, analysis, combinatorics, algebraic, discrete and Euclidean geometries, graph, group, model, number, set and Ramsey theories, dynamical systems, partial differential equations, and miscellaneous unsolved problems.

Lists of unsolved problems in mathematics

Over the course of time, several lists of unsolved mathematical problems have appeared.

List Number of problems Proposed by Proposed in
Hilbert's problems[2] 23 David Hilbert 1900
Landau's problems[3] 4 Edmund Landau 1912
Taniyama's problems[4] 36 Yutaka Taniyama 1955
Thurston's 24 questions[5][6] 24 William Thurston 1982
Smale's problems 18 Stephen Smale 1998
Millennium Prize problems 7 Clay Mathematics Institute 2000
Unsolved Problems on Mathematics for the 21st Century[7] 22 Jair Minoro Abe, Shotaro Tanaka 2001
DARPA's math challenges[8][9] 23 DARPA 2007

Millennium Prize Problems

Of the original seven Millennium Prize Problems set by the Clay Mathematics Institute in 2000, six have yet to be solved, as of 2017:[10]

The seventh problem, the Poincaré conjecture, has been solved.[11] The smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is still unsolved.[12]

Unsolved problems

Algebra

Algebraic geometry

Analysis

Combinatorics

Differential geometry

Discrete geometry

Euclidean geometry

Dynamical systems

Graph theory

Paths and cycles in graphs

Graph coloring and labeling

Graph drawing

Miscellaneous graph theory

Group theory

Model theory

Number theory

General

Additive number theory

Algebraic number theory

Combinatorial number theory

Prime numbers

Partial differential equations

Ramsey theory

Set theory

Other

Problems solved since 1995

References

  1. Eves, An Introduction to the History of Mathematics 6th Edition, Thomson, 1990, ISBN 978-0-03-029558-4.
  2. Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen, Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 21, pp. 243–295, ISBN 0-387-25284-3
  3. Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN 978-1-4899-3585-4.
  4. Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi:10.1112/blms/21.2.186.
  5. http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/dmv_091514.pdf
  6. "THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY" (PDF).
  7. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN 9051994907.
  8. "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
  9. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
  10. "Millennium Problems".
  11. "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
  12. "Smooth 4-dimensional Poincare conjecture".
  13. For background on the numbers that are the focus of this problem, see articles by Eric W. Weisstein, on pi (), e (), Khinchin's Constant (), irrational numbers (), transcendental numbers (), and irrationality measures () at Wolfram MathWorld, all articles accessed 15 December 2014.
  14. Michel Waldschmidt, 2008, "An introduction to irrationality and transcendence methods," at The University of Arizona The Southwest Center for Arithmetic Geometry 2008 Arizona Winter School, March 15–19, 2008 (Special Functions and Transcendence), see , accessed 15 December 2014.
  15. John Albert, posting date unknown, "Some unsolved problems in number theory" [from Victor Klee & Stan Wagon, "Old and New Unsolved Problems in Plane Geometry and Number Theory"], in University of Oklahoma Math 4513 course materials, see , accessed 15 December 2014.
  16. Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture" (PDF), Graphs and Combinatorics, 31 (6): 2043–2074, MR 3417215, doi:10.1007/s00373-014-1515-0
  17. Tao, Terence (2017), Some remarks on the lonely runner conjecture, arXiv:1701.02048Freely accessible
  18. Singmaster, D. (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly, 78 (4): 385–386, JSTOR 2316907, MR 1536288, doi:10.2307/2316907.
  19. Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129–156. doi:10.1016/S0304-3975(03)00080-X.
  20. Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order, 12 (4): 327–349, MR 1368815, doi:10.1007/BF01110378.
  21. Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, ISBN 978-3-319-00887-5, MR 3098784, doi:10.1007/978-3-319-00888-2
  22. Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics, 60 (1): 44–65, MR 1507301, doi:10.2307/2371542
  23. Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc., 37 (4): 437–458, MR 1779413, doi:10.1090/S0273-0979-00-00877-6; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc., 30: 1047–1053, arXiv:1604.08657Freely accessible, doi:10.1090/jams/869
  24. Dey, Tamal K. (1998), "Improved bounds for planar k-sets and related problems", Discrete Comput. Geom., 19: 373–382, MR 1608878, doi:10.1007/PL00009354; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete Comput. Geom., 26 (2): 187–194, MR 1843435, doi:10.1007/s004540010022.
  25. Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46.
  26. Weisstein, Eric Wolfgang. "Kobon Triangle". MathWorld.
  27. Matoušek, Jiří (2002), Lectures on discrete geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, p. 206, ISBN 0-387-95373-6, MR 1899299, doi:10.1007/978-1-4613-0039-7
  28. Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251
  29. Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp. 21–22, ISBN 0-387-98585-9
  30. Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN 0-387-23815-8, MR 2163782
  31. Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, MR 2902144, arXiv:1009.1419Freely accessible, doi:10.1007/s00283-011-9255-y
  32. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society, 61 (4): 346–352, doi:10.1090/noti1100
  33. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete and Computational Geometry, 7 (2): 153–162, MR 1139077, doi:10.1007/BF02187832
  34. Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, JSTOR 2977022, doi:10.2307/2977022
  35. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
  36. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, retrieved 2016-10-04.
  37. Kari, Jarkko (2009), "Structure of reversible cellular automata", Unconventional Computation: 8th International Conference, UC 2009, Ponta Delgada, Portugal, September 7ÔÇô11, 2009, Proceedings, Lecture Notes in Computer Science, 5715, Springer, p. 6, doi:10.1007/978-3-642-03745-0_5
  38. Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics, 310 (10–11): 1531–1535, MR 2601261, doi:10.1016/j.disc.2010.01.018.
  39. Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs", Journal of Graph Theory, 75 (3): 244–255, MR 3153119, doi:10.1002/jgt.21734
  40. Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1.
  41. Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7.
  42. Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, MR 608921, doi:10.1002/net.3230110108.
  43. L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combinatorics, Vol. 2, Elsevier, 1996, 1447–1540.
  44. Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99.
  45. Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR 1411244.
  46. Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10.
  47. Sauer, N. (2001), "Hedetniemi's conjecture: a survey", Discrete Mathematics, 229 (1–3): 261–292, MR 1815610, doi:10.1016/S0012-365X(00)00213-2.
  48. Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, MR 3047618.
  49. Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN 0-471-02865-7.
  50. Huang, C.; Kotzig, A.; Rosa, A. (1982), "Further results on tree labellings", Utilitas Mathematica, 21: 31–48, MR 668845.
  51. Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica, 18 (2): 241–280, MR 1656544, doi:10.1007/PL00009820.
  52. Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv:0909.0413Freely accessible.
  53. Wood, David (January 19, 2009), "Book Thickness of Subdivisions", Open Problem Garden, retrieved 2013-02-05.
  54. Fulek, R.; Pach, J. (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry, 44 (6–7): 345–355, MR 2785903, doi:10.1007/978-3-642-18469-7_21.
  55. Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 978-0-486-31552-2, MR 2047103.
  56. Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics, 26 (4): 525–536, MR 2669457, doi:10.1007/s00373-010-0934-9.
  57. Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry, 7 (1): 47–69, MR 3463906, doi:10.20382/jocg.v7i1a3
  58. Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, 152, American Mathematical Society, pp. 126–127.
  59. Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, retrieved 2013-03-19.
  60. Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory, 75 (2): 178–190, MR 3150572, Zbl 1280.05086, arXiv:1606.08827Freely accessible, doi:10.1002/jgt.21730.
  61. Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, pp. 17–30, ISBN 0-8218-2815-0.
  62. "Jorgensen's Conjecture", Open Problem Garden, retrieved 2016-11-13.
  63. Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, MR 2793448, Zbl 1218.05034, arXiv:1010.4430Freely accessible, doi:10.1112/plms/pdq035.
  64. Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory, 69 (1): 46–76, MR 2864622, doi:10.1002/jgt.20565.
  65. 1 2 3 Shelah S, Classification Theory, North-Holland, 1990
  66. Keisler, HJ, "Ultraproducts which are not saturated." J. Symb Logic 32 (1967) 23—46.
  67. Malliaris M, Shelah S, "A dividing line in simple unstable theories." http://arxiv.org/abs/1208.2140
  68. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  69. Peretz, Assaf, "Geometry of forking in simple theories." J. Symbolic Logic Volume 71, Issue 1 (2006), 347–359.
  70. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1–50. arXiv:math/9802134Freely accessible.
  71. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN 978-1-904987-71-0.
  72. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  73. Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN 978-0-8218-4893-7. Retrieved February 20, 2014.
  74. Shelah, Saharon. "Introduction to classification theory for abstract elementary classes".
  75. Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi:10.2307/2275025.
  76. Cherlin, G.; Shelah, S. (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory, Series B. 97 (3): 293–333. arXiv:math/0512218Freely accessible. doi:10.1016/j.jctb.2006.05.008.
  77. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  78. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key".
  79. http://arxiv.org/pdf/1604.07746v1.pdf
  80. Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics, 35 (2): 182–187, MR 2152886, doi:10.1016/j.aam.2005.01.004
  81. Ribenboim, P. (2006). Die Welt der Primzahlen (in German) (2nd ed.). Springer. pp. 242–243. ISBN 978-3-642-18078-1. doi:10.1007/978-3-642-18079-8.
  82. Dobson, J. B. (June 2012) [2011], On Lerch's formula for the Fermat quotient, p. 15, arXiv:1103.3907Freely accessible
  83. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", American Mathematical Society, 125: 1503–1509, JSTOR 2162098
  84. Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine
  85. Lamb, Evelyn (26 May 2016), "Two-hundred-terabyte maths proof is largest ever", Nature, 534: 17–18, PMID 27251254, doi:10.1038/nature.2016.19990; Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016), "Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer", Theory and applications of satisfiability testing—SAT 2016, Lecture Notes in Comput. Sci., 9710, Springer, [Cham], pp. 228–245, MR 3534782, arXiv:1605.00723Freely accessible, doi:10.1007/978-3-319-40970-2_15
  86. Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398.
  87. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov’s Mean Value Theorem for degrees higher than three". Annals of Mathematics.
  88. http://arxiv.org/pdf/1509.05363v5.pdf
  89. Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. doi:10.1186/s40687-015-0044-7 via link.springer.com.
  90. http://arxiv.org/pdf/1406.6534v10.pdf
  91. "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. Natalie Wolchover. March 28, 2017. Retrieved May 2, 2017.
  92. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897Freely accessible [math.NT].
  93. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252Freely accessible [math.NT].
  94. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748Freely accessible [math.NT].
  95. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal, eds. "The Kadison-Singer problem in mathematics and engineering: A detailed account". Contemporary Mathematics. Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. American Mathematical Society. 414: 299–355. ISBN 978-0-8218-3923-2. doi:10.1090/conm/414/07820. Retrieved 24 April 2015.
  96. Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News (January/February 2014). Society for Industrial and Applied Mathematics. Retrieved 24 April 2015.
  97. http://arxiv.org/pdf/1204.2810v1.pdf
  98. http://www.math.jhu.edu/~js/Math646/brendle.lawson.pdf
  99. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179: 683–782. arXiv:1202.6036Freely accessible. doi:10.4007/annals.2014.179.2.6.
  100. http://arxiv.org/pdf/1101.1330v4.pdf
  101. http://www.math.uiuc.edu/~mineyev/math/art/submult-shnc.pdf
  102. http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf
  103. https://www.uni-due.de/~bm0032/publ/BlochKato.pdf
  104. "page 359" (PDF).
  105. "motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow".
  106. http://arxiv.org/pdf/1011.4105v3.pdf
  107. https://www.researchgate.net/profile/Juan_Souto3/publication/228365532_Non-realizability_and_ending_laminations_Proof_of_the_Density_Conjecture/links/541d85a10cf2218008d1d2e5.pdf
  108. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. Princeton University and Institute for Advanced Study. 176 (1): 383–412. doi:10.4007/annals.2012.176.1.7.
  109. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Extra Volume "Optimization Stories": 75–85.
  110. "Generalized Sidon sets". Advances in Mathematics. 225: 2786–2807. doi:10.1016/j.aim.2010.05.010.
  111. http://arxiv.org/pdf/0909.2360v3.pdf
  112. http://arxiv.org/pdf/0906.1612v2.pdf
  113. http://arxiv.org/pdf/0910.5501v5.pdf
  114. http://www.csie.ntu.edu.tw/~hil/bib/ChalopinG09.pdf
  115. http://arxiv.org/pdf/0809.4040.pdf
  116. 1 2 "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  117. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, doi:10.1007/s00222-009-0205-7
  118. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre’s modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, doi:10.1007/s00222-009-0206-6
  119. "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 58 (4): 610–611. ISSN 1088-9477. OCLC 34550461.
  120. http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf
  121. http://arxiv.org/pdf/math/0509397.pdf
  122. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
  123. http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf
  124. http://home.broadpark.no/~oddvark/angel/Angel.pdf
  125. http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf
  126. http://www.cs.bu.edu/~gacs/papers/angel.pdf
  127. http://www.ams.org/journals/proc/2005-133-09/S0002-9939-05-07752-X/S0002-9939-05-07752-X.pdf
  128. "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
  129. http://arxiv.org/pdf/math/0405568v1.pdf
  130. "Graph Theory".
  131. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 62 (4): 358. ISSN 1088-9477. OCLC 34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
  132. "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. Providence, Rhode Island, United States: American Mathematical Society. 57 (5): 642–643. May 2010. ISSN 1088-9477. OCLC 34550461. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
  133. http://arxiv.org/pdf/math/0412006v2.pdf
  134. Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete and Computational Geometry, 30 (2): 205–239, MR 1931840, doi:10.1007/s00454-003-0006-7
  135. Green, Ben (2004), "The Cameron–Erdős conjecture", The Bulletin of the London Mathematical Society, 36 (6): 769–778, MR 2083752, arXiv:math.NT/0304058Freely accessible, doi:10.1112/S0024609304003650
  136. "News from 2007". American Mathematical Society. AMS. 31 December 2007. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
  137. "Reduced power operations in motivic cohomology" (PDF). archive.numdam.org.
  138. "Kemnitz’ conjecture revisited". Discrete Mathematics. 297: 196–201. doi:10.1016/j.disc.2005.02.018.
  139. http://www.ams.org/journals/jams/2004-17-01/S0894-0347-03-00440-5/S0894-0347-03-00440-5.pdf
  140. http://annals.math.princeton.edu/wp-content/uploads/annals-v158-n1-p04.pdf
  141. "The strong perfect graph theorem".
  142. http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf
  143. Knight, R. W. (2002), The Vaught Conjecture: A Counterexample, manuscript
  144. http://www.ugr.es/~ritore/preprints/0406017.pdf
  145. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. American Mathematical Society. 41 (1): 43–57. ISSN 0273-0979. doi:10.1090/s0273-0979-03-00993-5. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
  146. http://www.ams.org/journals/jams/2001-14-04/S0894-0347-01-00373-3/S0894-0347-01-00373-3.pdf
  147. http://junon.u-3mrs.fr/monniaux/AHLMT02.pdf
  148. http://arxiv.org/pdf/math/0102150v4.pdf
  149. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society, 14 (4): 843–939, ISSN 0894-0347, MR 1839918, doi:10.1090/S0894-0347-01-00370-8
  150. http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf
  151. http://intlpress.com/site/pub/files/_fulltext/journals/sdg/2002/0007/0001/SDG-2002-0007-0001-a001.pdf
  152. Croot, Ernest S., III (2000), Unit Fractions, Ph.D. thesis, University of Georgia, Athens. Croot, Ernest S., III (2003), "On a coloring conjecture about unit fractions", Annals of Mathematics, 157 (2): 545–556, arXiv:math.NT/0311421Freely accessible, doi:10.4007/annals.2003.157.545
  153. http://arxiv.org/pdf/math/9906042v2.pdf
  154. http://arxiv.org/pdf/math/9906212v2.pdf
  155. Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. Zbl 0934.14013. doi:10.2307/120987.
  156. Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi:10.2307/120986.
  157. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN 1431-0635, MR 1648105
  158. http://arxiv.org/pdf/1501.02155.pdf
  159. http://arxiv.org/pdf/math/9811079v3.pdf
  160. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
  161. Merel, Loïc (1996). "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]. Inventiones Mathematicae (in French) 124 (1): 437–449. doi:10.1007/s002220050059. MR1369424
  162. https://www.researchgate.net/profile/Zhibo_Chen/publication/220188021_Harary's_conjectures_on_integral_sum_graphs/links/5422b2490cf290c9e3aac7fe.pdf
  163. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. Annals of Mathematics. 141 (3): 443–551. JSTOR 2118559. OCLC 37032255. doi:10.2307/2118559.
  164. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. Annals of Mathematics. 141 (3): 553–572. JSTOR 2118560. OCLC 37032255. doi:10.2307/2118560.

Further reading

Books discussing recently solved problems

Books discussing unsolved problems

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.