Trimethylamine

Trimethylamine[1]
Names
Preferred IUPAC name
N,N-Dimethylmethanamine
Other names
(Trimethyl)amine
(The name trimethylamine is deprecated.)
Identifiers
3D model (JSmol)
3DMet B00133
956566
ChEBI
ChemSpider
ECHA InfoCard 100.000.796
EC Number 200-875-0
KEGG
RTECS number PA0350000
UNII
UN number 1083
Properties
C3H9N
Molar mass 59.11 g·mol−1
Appearance Colorless gas
Odor Fishy, ammoniacal
Density 670 kg m−3 (at 0 °C)
627.0 kg m−3 (at 25 °C)
Melting point −117.20 °C; −178.96 °F; 155.95 K
Boiling point 3 to 7 °C; 37 to 44 °F; 276 to 280 K
Miscible
log P 0.119
Vapor pressure 188.7 kPa (at 20 °C)[2]
95 μmol Pa−1 kg−1
Basicity (pKb) 4.19
Thermochemistry
−24.5 to −23.0 kJ mol−1
Hazards
GHS pictograms
GHS signal word DANGER
H220, H315, H318, H332, H335
P210, P261, P280, P305+351+338
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
4
2
0
Flash point −7 °C (19 °F; 266 K)
190 °C (374 °F; 463 K)
Explosive limits 2–11.6%
Lethal dose or concentration (LD, LC):
500 mg kg−1 (oral, rat)
US health exposure limits (NIOSH):
PEL (Permissible)
none[3]
REL (Recommended)
TWA 10 ppm (24 mg/m3) ST 15 ppm (36 mg/m3)[3]
IDLH (Immediate danger)
N.D.[3]
Related compounds
Related amines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Trimethylamine (TMA) is an organic compound with the formula N(CH3)3. This colorless, hygroscopic, and flammable tertiary amine has a strong "fishy" odor in low concentrations and an ammonia-like odor at higher concentrations. It is a gas at room temperature but is usually sold in pressurized gas cylinders or as a 40% solution in water. TMA is a nitrogenous base and can be readily protonated to give trimethylammonium cation. Trimethylammonium chloride is a hygroscopic colorless solid prepared from hydrochloric acid. Trimethylamine is a good nucleophile, and this reaction is the basis of most of its applications.

Trimethylamine is a product of decomposition of plants and animals. In humans, it is synthesized exclusively by gut microbiota from dietary nutrients such as choline and carnitine.[4][5] High levels of trimethylamine are associated with the development of fish odor syndrome, which arise from the foul, fishy odor of trimethylamine.[4][5] TMA is the substance mainly responsible for the odor often associated with rotting fish, some infections, bad breath and can be a cause of vaginal odor due to bacterial vaginosis. It is also associated with taking large doses of choline and carnitine.

In 2013, trimethylamine was identified as a potent full agonist of human TAAR5,[6][7][8] a trace amine-associated receptor that is expressed in the olfactory epithelium and functions as an olfactory receptor for tertiary amines.[8][9] One or more additional odorant receptors appear to be involved in trimethylamine olfaction in humans as well.[9]

Production

Trimethylamine is prepared by the reaction of ammonia and methanol employing a catalyst:[10]

3 CH3OH + NH3 → (CH3)3N + 3 H2O

This reaction coproduces the other methylamines, dimethylamine (CH3)2NH and methylamine CH3NH2.

Trimethylamine has also been prepared by a reaction of ammonium chloride and paraformaldehyde,[11] according to the following equation:

9 (CH2=O)n + 2n NH4Cl → 2n (CH3)3N•HCl + 3n H2O + 3n CO2

Applications

Trimethylamine is used in the synthesis of choline, tetramethylammonium hydroxide, plant growth regulators or herbicides, strongly basic anion exchange resins, dye leveling agents and a number of basic dyes.[10][12] Gas sensors to test for fish freshness detect trimethylamine.

Trimethylaminuria

Trimethylaminuria is an autosomal recessive genetic disorder involving a defect in the function or expression of flavin-containing monooxygenase 3 (FMO3) which results in poor trimethylamine metabolism. Individuals with trimethylaminuria develop a characteristic fish odor - the smell of trimethylamine - in their sweat, urine, and breath after the consumption of choline-rich foods. A condition similar to trimethylaminuria has also been observed in a certain breed of Rhode Island Red chicken that produces eggs with a fishy smell, especially after eating food containing a high proportion of rapeseed.[13][14]

See also

References

  1. Merck Index, 11th Edition, 9625.
  2. Swift, Elijah; Hochanadel, Helen Phillips (May 1945). "The Vapor Pressure of Trimethylamine from 0 to 40°". Journal of the American Chemical Society. 67 (5): 880–881. doi:10.1021/ja01221a508. Retrieved December 19, 2016.
  3. 1 2 3 "NIOSH Pocket Guide to Chemical Hazards #0636". National Institute for Occupational Safety and Health (NIOSH).
  4. 1 2 Falony G, Vieira-Silva S, Raes J (2015). "Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine". Annu. Rev. Microbiol. 69: 305–321. PMID 26274026. doi:10.1146/annurev-micro-091014-104422. we review literature on trimethylamine (TMA), a microbiota-generated metabolite linked to atherosclerosis development.
  5. 1 2 Gaci N, Borrel G, Tottey W, O'Toole PW, Brugère JF (November 2014). "Archaea and the human gut: new beginning of an old story". World J. Gastroenterol. 20 (43): 16062–16078. PMC 4239492Freely accessible. PMID 25473158. doi:10.3748/wjg.v20.i43.16062. Trimethylamine is exclusively a microbiota-derived product of nutrients (lecithin, choline, TMAO, L-carnitine) from normal diet, from which seems originate two diseases, trimethylaminuria (or Fish-Odor Syndrome) and cardiovascular disease through the proatherogenic property of its oxidized liver-derived form.
  6. Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmüller J, Becker C, Schmidt A, Hatt H, Hummel T, Gisselmann G (2013). "Human trace amine-associated receptor TAAR5 can be activated by trimethylamine". PLoS ONE. 8 (2): e54950. PMC 3564852Freely accessible. PMID 23393561. doi:10.1371/journal.pone.0054950.
  7. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (February 2013). "Ultrasensitive detection of amines by a trace amine-associated receptor". J. Neurosci. 33 (7): 3228–39. PMC 3711460Freely accessible. PMID 23407976. doi:10.1523/JNEUROSCI.4299-12.2013. We show that [human TAAR5] responds to the tertiary amine N,N-dimethylethylamine and to a lesser extent to trimethylamine, a structurally related agonist for mouse and rat TAAR5 (Liberles and Buck, 2006; Staubert et al., 2010; Ferrero et al., 2012).
  8. 1 2 Zhang LS, Davies SS (April 2016). "Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions". Genome Med. 8 (1): 46. PMC 4840492Freely accessible. PMID 27102537. doi:10.1186/s13073-016-0296-x.
    Table 2: Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease
    Figure 1: Molecular mechanisms of action of indole and its metabolites on host physiology and disease
  9. 1 2 Liberles SD (October 2015). "Trace amine-associated receptors: ligands, neural circuits, and behaviors". Curr. Opin. Neurobiol. 34: 1–7. PMID 25616211. doi:10.1016/j.conb.2015.01.001.
  10. 1 2 A. B. van Gysel, W. Musin "Methylamines" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/14356007.a16_535
  11. Roger Adams, B. K. Brown. "Trimethylamine". Org. Synth.; Coll. Vol., 1, p. 75
  12. Ashford's Dictionary of Industrial Chemicals (3rd ed.). 2011. p. 9362. ISBN 978-0-9522674-3-0.
  13. Pearson, Arthur W.; Butler, Edward J.; Curtis, R. Frank; Fenwick, G. Roger; Hobson-Frohock, Anthony; Land, Derek G. (1979). "Effect of rapeseed meal on trimethylamine metabolism in the domestic fowl in relation to egg taint". Journal of the Science of Food and Agriculture. 30 (8): 799–804. doi:10.1002/jsfa.2740300809. Retrieved December 19, 2016.
  14. Lichovníková, M.; Zeman, L.; Jandásek, J. (2008). "The effect of feeding untreated rapeseed and iodine supplement on egg quality" (PDF). Czech Journal of Animal Science. 53 (2): 77–82. Retrieved December 19, 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.