Triethylenetetramine

Triethylenetetramine
Names
Other names
N,N'-Bis(2-aminoethyl)ethane-1,2-diamine; TETA; Trien; Trientine (INN); Syprine (brand name)
Identifiers
3D model (JSmol)
605448
ChEBI
ChemSpider
ECHA InfoCard 100.003.591
EC Number 203-950-6
27008
KEGG
MeSH Trientine
RTECS number YE6650000
UNII
UN number 2259
Properties
C6H18N4
Molar mass 146.24 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 982 mg mL−1
Melting point −34.6 °C; −30.4 °F; 238.5 K
Boiling point 266.6 °C; 511.8 °F; 539.7 K
Miscible
log P 1.985
Vapor pressure <1 Pa (at 20 °C)
1.496
Thermochemistry
376 J K−1 mol−1 (at 60 °C)
Pharmacology
A16AX12 (WHO)
Hazards
GHS pictograms
GHS signal word DANGER
H312, H314, H317, H412
P273, P280, P305+351+338, P310
Flash point 129 °C (264 °F; 402 K)
Lethal dose or concentration (LD, LC):
  • 550 mg kg−1 (dermal, rabbit)
  • 2.5 g kg−1 (oral, rat)
Related compounds
Related amines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Triethylenetetramine, abbreviated TETA and trien and also called trientine (INN), is an organic compound with the formula [CH2NHCH2CH2NH2]2. This oily liquid is colorless but, like many amines, assumes a yellowish color due to impurities resulting from air-oxidation. It is soluble in polar solvents. The branched isomer tris(2-aminoethyl)amine and piperazine derivatives may also be present in commercial samples of TETA.[1]

Production

TETA is prepared by heating ethylenediamine or ethanolamine/ammonia mixtures over an oxide catalyst. This process gives a variety of amines, which are separated by distillation and sublimation.[2]

Uses

The reactivity and uses of TETA are similar to those for the related polyamines ethylenediamine and diethylenetriamine. It was primarily used as a crosslinker ("hardener") in epoxy curing.[2]

The hydrochloride salt of TETA, referred to as trientine hydrochloride, is a chelating agent that is used to bind and remove copper in the body to treat Wilson's disease, particularly in those who are intolerant to penicillamine. Some recommend trientine as first-line treatment, but experience with penicillamine is more extensive.[3]

Coordination chemistry

TETA is a tetradentate ligand in coordination chemistry, where it is referred to as trien.[4] Octahedral complexes of the type M(trien)Cl3 can adopt several diastereomeric structures, most of which are chiral.[5]

References

  1. "Ethyleneamines" (PDF). Huntsman. 2007.
  2. 1 2 Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. (2005). "Amines, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_001.
  3. Roberts, E. A.; Schilsky, M. L. (2003). "A practice guideline on Wilson disease" (pdf). Hepatology. 37 (6): 1475–1492. PMID 12774027. doi:10.1053/jhep.2003.50252.
  4. von Zelewsky, A. (1995). Stereochemistry of Coordination Compounds. Chichester: John Wiley. ISBN 047195599X.
  5. Utsuno, S.; Sakai, Y.; Yoshikawa, Y.; Yamatera, H. (1985). "Three Isomers of the Trans-Diammine-[N,N′-bis(2-Aminoethyl)-1,2-Ethanediamine]-Cobalt(III) Complex Cation". Inorganic Syntheses. 23: 79–82. doi:10.1002/9780470132548.ch16.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.