Treadmill

A treadmill is a device generally for walking or running or climbing while staying in the same place. Treadmills were introduced before the development of powered machines, to harness the power of animals or humans to do work, often a type of mill that was operated by a person or animal treading steps of a treadwheel to grind grain. In later times, treadmills were used as punishment devices for people sentenced to hard labour in prisons. The terms treadmill and treadwheel were used interchangeably for the power and punishment mechanisms.

More recently, treadmills are not used to harness power, but as exercise machines for running or walking in one place. Rather than the user powering the mill, the machine provides a moving platform with a wide conveyor belt driven by an electric motor or a flywheel. The belt moves to the rear, requiring the user to walk or run at a speed matching that of the belt. The rate at which the belt moves is the rate of walking or running. Thus, the speed of running may be controlled and measured. The more expensive, heavy-duty versions are motor-driven (usually by an electric motor). The simpler, lighter, and less expensive versions passively resist the motion, moving only when walkers push the belt with their feet. The latter are known as manual treadmills.

According to Sports & Fitness Industry Association, treadmills continue to be the largest selling exercise equipment category by a large margin. [1] As a result, the treadmill industry counts with hundreds of manufacturers throughout the World.[2]

History

The first consumer treadmill for home use was developed by William Staub, a mechanical engineer.[3] Staub developed his treadmill after reading the 1968 book, Aerobics, by Dr. Kenneth H. Cooper.[3] Cooper's book noted that individuals who ran for eight minutes four-to-five times a week would be in better physical condition.[3] Staub noticed that there were no affordable household treadmills at the time and decided to develop a treadmill for his own use during the late 1960s.[3] He called his first treadmill the PaceMaster 600.[3] Once finished, Staub sent his prototype treadmill to Cooper, who found the machine's first customers, which included sellers of fitness equipment.[3]

Staub began producing the first home treadmills at his plant in Clifton, New Jersey, before moving production to Little Falls, New Jersey.[3]

Treadmills for power

Human-powered treadmill for grinding grain
Horses powering a threshing mill

Treadmills as power sources originated in antiquity.[4] These ancient machines came in three major designs.[5] The first was to have a horizontal bar jutting out of a vertical shaft. It rotated around a vertical axis, driven by an ox or other animal walking in a circle pushing the bar. Even humans were used to power them. The second design was a vertical wheel that was powered through climbing in place instead of walking in circles. This is similar to what we know today as the hamster wheel. The third design also required climbing but used a sloped, moving platform instead.

Treadmills as muscle powered engines originated roughly 4000 years ago.[6] Their primary use was to lift buckets of water. This same technology was later adapted to create rotary grain mills and the treadwheel crane. It was also used to pump water and power dough-kneading machines and bellows.

Treadmills for punishment

Treadmill used to punish prisoners at Breakwater Prison, Cape Town

Treadmills were invented in 1818 by an English engineer named Sir William Cubitt, son of a miller. Noting idle prisoners at Bury St Edmunds gaol, he proposed using their muscle power to both cure their idleness and produce useful work.[7]

Cubitt's treadmills for punishment usually rotated around a horizontal axis, requiring the user to step upwards, like walking up an endless staircase. Those punished walked around the outside of the wheel holding a horizontal handrail for stability. Earlier treadwheels include either horizontal or inclined-axis devices designed for a single user as well as a horizontal-axis design with the user inside and using the shaft as a handrail, in a manner similar to the familiar toys for small pet animals such as hamsters.

They remained in use until the second half of the 19th century; they were like twenty-foot long paddle wheels with twenty-four steps around a six-foot cylinder. Several prisoners stood side-by-side on a wheel, and had to work six or more hours a day, effectively climbing 5,000 to 14,000 vertical feet (1,5 to 4 km). While the purpose was mainly punitive, the most infamous mill at Brixton Prison was installed in 1821 and used to grind grain to supplement an existing windmill which Cubitt had previously installed nearby. It gained notoriety for the cruelty with which it was used, which then became a popular satirical metaphor for early-19th century prisons.

The machines could also be used to pump water or power ventilators in mines.[8][9]

Exercise treadmills

Laufband (Treadmill)
Treadclimber

The US patent of treadmill "training machine" (#1,064,968) was issued on June 17, 1913.[10]

The forerunner of exercise treadmills was designed to diagnose heart and lung disease, and was invented by Dr. Robert Bruce and Wayne Quinton at the University of Washington in 1952.[11][12] Dr. Kenneth H. Cooper's research on the benefits of aerobic exercise, published in 1968, provided a medical argument to support the commercial development of the home treadmill and exercise bike.

Treadmill test at the medical center of the Olympic village at the 1980 Summer Olympics

Among the users of treadmills today are medical facilities (hospitals, rehabilitation centers, medical and physiotherapy clinics, institutes of higher education), sports clubs, Biomechanics Institute, orthopedic shoe shops, running shops, Olympic training centers, universities, fire-training centers, NASA, test facilities and training rooms of police and army, gyms and even home users.

Treadmill ergometers are now mainly motor driven. Most treadmills have a running table with sliding plate. Before and after the race table, there are two shafts. The running belt is stretched between the shafts and the running deck. Safety standards for treadmills are the IEC EN 957-1 and IEC EN 957-6.

For medical treadmills applicable norms, standards and guidelines are the Medical Device Directive (MDD), European Guideline 93/42 EEC, European Guideline 2007/47 EEC, IEC EN 60601-1, EN 62304, EN 14971 and the machinery directive 2006/42/EC.

Medical treadmills are class IIb active therapeutic devices and also active devices for diagnosis. With their very powerful (e.g. 3.3 kW = 4.5 HP) electric motor powered drive system treadmills deliver mechanical energy to the human body through the moving running belt of the treadmill. The subject is not changing his horizontal position and is passively moved and forced to catch up with the running belt underneath his feet. The subject can also be fixed in safety harnesses, unweighting systems, various supports or even fixed in and moved with a robotic orthotic system utilizing the treadmill.

Medical treadmills are also active measuring devices. When connected through an interface with ECG, ergospirometry, blood pressure monitor (BPM), or EMG, they become a new medical system (e.g., stress test system or cardiopulmonary rehabilitation system) and can also be equipped to measure VO2max and various other vital functions.

Most treadmills have a “cardio mode”, where a target heart rate is defined and the speed and elevation (load) is controlled automatically until the subject is in “heart rate steady state”. So the treadmill is delivering mechanical energy to the human body based on the vital function (heart rate) of the subject.

A medical treadmill which is also used for ergometry and cardiopulmonary stress test as well as performance diagnostics is always a class IIb medical device either when used as stand-alone device in a medical environment or when used in connection with an ECG, EMG, ergospirometry, or blood pressure monitoring device.

NASA astronaut T.J. Creamer, Expedition 22 flight engineer, equipped with a bungee harness, exercises on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the Harmony node of the International Space Station.

On the running deck the subject is moving, who adapts to the adjustable speed of the belt. The running deck is usually mounted on damping elements, so the running deck has shock absorbing characteristics. By a lifting element, the entire frame including treadmill running deck will be raised and thus simulates a pitch angle for uphill running. Some treadmills also have the reversing of a running belt for the purpose of downhill loads. Most treadmills for professionals in the fitness area, run for table sizes of about 150 cm long and 50 cm width, a speed range of about 0 ... 20 km/h and slope angle of 0 ... 20%.

For athletes, larger and more stable treadmills are necessary. Sprinters reach with some weight relief temporarily speeds of up to 45 km/h must therefore run on a large deck of up to 300 cm in length and have up to 100 cm width. At high physical exertion and increased risk of falling a fall stop unit is required to prevent a fall of the subjects or patients. This fall stop device is usually implemented by a safety arch on which a rope is attached to an electrical switch. A harness bears the subject preventing from falling and shuts down the running belt.

In some offices, employees are provided with treadmill desks so that employees can walk while working on a computer or speaking on the phone.[13]

In treatment centers treadmills are used with built-in seats left and right for therapists, for example, so the therapists then can move the legs of a stroke patient in order to simulate walking movements and learn to walk again. This is called manual locomotion therapy.

Oversized treadmills are also used for cycling at speeds up to 80 km/h, for wheelchair users and in special applications with thick running belt for cross-country skiing and biathlon, where athletes perform training and testing exercise with roller ski on a running deck of up to sizes of 450 x 300 cm.

Advantages

Disadvantages

As a cardiovascular exercise:

As an indoor activity:

As a machine:

Other uses

Steers on a treadmill

As it is basically a conveyor belt, the treadmill can be used for activities other than running. If horses are being tested (especially in jockey racing) they will be put on a specially constructed treadmill. Large treadmills can also accommodate cars. Treadmills can also be used to exercise dogs that are accustomed to running on a conveyor; however tying the leash to the treadmill should be avoided as it can cause serious injury.

Donkey powered well hoist
Military working dog, walks on a underwater treadmill to recover from an injury

Dog/Pet and underwater pet treatment treadmills are available for both home and clinical use. A variety of makes and models are available, but key features of treadmills designed for pet use include a longer running surface, open front and back entries and side rails to prevent the pet from falling off the treadmill. None are designed to be used without human supervision. Many veterinary and animal rehabilitation clinics also offer underwater treadmill therapy as part of their services provided to clients' pets.

Omnidirectional treadmill

Advanced applications are so called omnidirectional treadmills. They are designed to move in two dimensions and are intended as the base for a "holodeck". There are several solutions which were proposed and research continues because some issues remain unsolved, such as large size, noise and vibration. There are parallel developments being conducted by researchers working on projects sponsored by the Department of Veterans Affairs to create virtual reality environments for a wheelchair trainer in order to promote therapeutic exercise.[17]

See also

References

  1. Jacobs, Cameron (2015-04-20). "Sports and Fitness Industry Surpasses $84 Billion in Wholesale Sales". [Sports and Fitness Industry Association]. Retrieved 2016-07-09.
  2. Roig, Josep (2015-06-06). "List of Treadmill Manufacturers". [Cintasdecorrer.com]. Retrieved 2016-07-09.
  3. 1 2 3 4 5 6 7 Brown, Steven (2012-06-23). "William Staub of Clifton, developer of first home treadmill, dies at 96". [Treadmill Consumers]. Retrieved 2012-07-26.
  4. Major, Kenneth (1980). "The Pre-Industrial Sources of Power: Muscle Power". History Today. Retrieved June 22, 2012.
  5. "Histories and Precedents". University of Illinois at Chicago. Archived from the original on 2012-02-22. Retrieved September 2, 2013.
  6. Vogel, Steven (March 2002). "A short history of muscle-powered machines: what goes around comes around— and does useful work". Natural History (magazine). Retrieved June 22, 2012. C1 control character in |title= at position 74 (help)
  7. Cassie Arnold. "The Treadmill's Prison Origins". Mental Floss, Inc (USA). Retrieved 2013-06-12.
  8. Thompson, Irene (2008). The A-Z of punishment and torture. Book Guild Publishing. p. 134. ISBN 978-1-84624-203-8. Archived from the original on 2013-07-30.
  9. Cleveland Holt, Thomas (1992). The problem of freedom: race, labor, and politics in Jamaica and Britain, 1832-1938. JHU Press. p. 106. ISBN 978-0-8018-4291-7.
  10. "Patent US1064968 - Training-machine. - Google Patents". Google.no. Retrieved 2014-07-22.
  11. Peyman, Brooke (March 31, 2011). "Can You Lose Stomach Fat On A Treadmill?". Livestrong.com. Retrieved 2012-02-29.
  12. "Exercise Treadmill". Beauty Tips Hub. Retrieved 2012-02-29.
  13. "I Put In 5 Miles at the Office"
  14. Bavro, Gian. "RUNNERS: True Treadmill is the Dream Machine, and YOU are missing out!". Archived from the original on 2012-09-07. Retrieved 2012-08-23.
  15. Luff, Christine (September 6, 2009). "How To Beat Boredom on the Treadmill". About.com. Retrieved January 22, 2009.
  16. Parker-Pope, Tara (May 27, 2009). "The Dangers of Treadmills". The New York Times. Retrieved January 22, 2009.
  17. "Kinetic and physiological analysis of the GAMEWheels system". Journal of Rehabilitation Research & Development. 39 (6): 627–634. November–December 2002.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.