Transcription elongation regulator 1
Transcription elongation regulator 1, also known as TCERG1, is a protein which in humans is encoded by the TCERG1 gene.[5][6][7]
Function
This gene encodes a nuclear protein that regulates transcriptional elongation and pre-mRNA splicing. The encoded protein interacts with the hyperphosphorylated C-terminal domain of RNA polymerase II via multiple FF domains, and with the pre-mRNA splicing factor SF1 via a WW domain. Alternative splicing results in multiple transcripts variants encoding different isoforms.[5]
Interactions
Transcription elongation regulator 1 has been shown to interact with SF1[8] and POLR2A.[9]
References
- 1 2 3 GRCh38: Ensembl release 89: ENSG00000113649 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024498 - Ensembl, May 2017
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- 1 2 "Entrez Gene: TCERG1 transcription elongation regulator 1".
- ↑ Suñé C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA (October 1997). "CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription". Molecular and Cellular Biology. 17 (10): 6029–39. PMC 232452 . PMID 9315662.
- ↑ Bohne J, Cole SE, Suñe C, Lindman BR, Ko VD, Vogt TF, Garcia-Blanco MA (October 2000). "Expression analysis and mapping of the mouse and human transcriptional regulator CA150". Mammalian Genome : Official Journal of the International Mammalian Genome Society. 11 (10): 930–3. PMID 11003711. doi:10.1007/s003350010162.
- ↑ Goldstrohm, A C; Albrecht T R; Suñé C; Bedford M T; Garcia-Blanco M A (November 2001). "The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1". Mol. Cell. Biol. United States. 21 (22): 7617–28. ISSN 0270-7306. PMC 99933 . PMID 11604498. doi:10.1128/MCB.21.22.7617-7628.2001.
- ↑ Carty, S M; Goldstrohm A C; Suñé C; Garcia-Blanco M A; Greenleaf A L (August 2000). "Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II". Proc. Natl. Acad. Sci. U.S.A. UNITED STATES. 97 (16): 9015–20. ISSN 0027-8424. PMC 16813 . PMID 10908677. doi:10.1073/pnas.160266597.
Further reading
- Suñé C, Hayashi T, Liu Y, et al. (1997). "CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription". Mol. Cell. Biol. 17 (10): 6029–39. PMC 232452 . PMID 9315662.
- Neubauer G, King A, Rappsilber J, et al. (1998). "Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex". Nat. Genet. 20 (1): 46–50. PMID 9731529. doi:10.1038/1700.
- Suñé C, Garcia-Blanco MA (1999). "Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner". Mol. Cell. Biol. 19 (7): 4719–28. PMC 84270 . PMID 10373521.
- Carty SM, Goldstrohm AC, Suñé C, et al. (2000). "Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II". Proc. Natl. Acad. Sci. U.S.A. 97 (16): 9015–20. PMC 16813 . PMID 10908677. doi:10.1073/pnas.160266597.
- Bohne J, Cole SE, Suñe C, et al. (2000). "Expression analysis and mapping of the mouse and human transcriptional regulator CA150". Mamm. Genome. 11 (10): 930–3. PMID 11003711. doi:10.1007/s003350010162.
- Holbert S, Denghien I, Kiechle T, et al. (2001). "The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis". Proc. Natl. Acad. Sci. U.S.A. 98 (4): 1811–6. PMC 29339 . PMID 11172033. doi:10.1073/pnas.041566798.
- Goldstrohm AC, Albrecht TR, Suñé C, et al. (2001). "The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1". Mol. Cell. Biol. 21 (22): 7617–28. PMC 99933 . PMID 11604498. doi:10.1128/MCB.21.22.7617-7628.2001.
- Zhou Z, Licklider LJ, Gygi SP, Reed R (2002). "Comprehensive proteomic analysis of the human spliceosome". Nature. 419 (6903): 182–5. PMID 12226669. doi:10.1038/nature01031.
- Carty SM, Greenleaf AL (2003). "Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing". Mol. Cell Proteomics. 1 (8): 598–610. PMID 12376575. doi:10.1074/mcp.M200029-MCP200.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMC 139241 . PMID 12477932. doi:10.1073/pnas.242603899.
- Chattopadhyay B, Ghosh S, Gangopadhyay PK, et al. (2003). "Modulation of age at onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India". Neurosci. Lett. 345 (2): 93–6. PMID 12821179. doi:10.1016/S0304-3940(03)00436-1.
- Reuter TY, Medhurst AL, Waisfisz Q, et al. (2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Exp. Cell Res. 289 (2): 211–21. PMID 14499622. doi:10.1016/S0014-4827(03)00261-1.
- Palancade B, Marshall NF, Tremeau-Bravard A, et al. (2004). "Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins". J. Mol. Biol. 335 (2): 415–24. PMID 14672652. doi:10.1016/j.jmb.2003.10.036.
- Nagel JE, Smith RJ, Shaw L, et al. (2005). "Identification of genes differentially expressed in T cells following stimulation with the chemokines CXCL12 and CXCL10". BMC Immunol. 5: 17. PMC 514893 . PMID 15296517. doi:10.1186/1471-2172-5-17.
- Goehler H, Lalowski M, Stelzl U, et al. (2004). "A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease". Mol. Cell. 15 (6): 853–65. PMID 15383276. doi:10.1016/j.molcel.2004.09.016.
- Lin KT, Lu RM, Tarn WY (2004). "The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo". Mol. Cell. Biol. 24 (20): 9176–85. PMC 517884 . PMID 15456888. doi:10.1128/MCB.24.20.9176-9185.2004.
- Smith MJ, Kulkarni S, Pawson T (2004). "FF domains of CA150 bind transcription and splicing factors through multiple weak interactions". Mol. Cell. Biol. 24 (21): 9274–85. PMC 522232 . PMID 15485897. doi:10.1128/MCB.24.21.9274-9285.2004.
- Andersen JS, Lam YW, Leung AK, et al. (2005). "Nucleolar proteome dynamics". Nature. 433 (7021): 77–83. PMID 15635413. doi:10.1038/nature03207.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. PMC 1356129 . PMID 16344560. doi:10.1101/gr.4039406.
- McFie PJ, Wang GL, Timchenko NA, et al. (2006). "Identification of a co-repressor that inhibits the transcriptional and growth-arrest activities of CCAAT/enhancer-binding protein alpha". J. Biol. Chem. 281 (26): 18069–80. PMID 16644732. doi:10.1074/jbc.M512734200.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.