Topological K-theory
In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.
Definitions
Let X be a compact Hausdorff space and k = R, C. Then Kk(X) is the Grothendieck group of the commutative monoid of isomorphism classes of finite-dimensional k-vector bundles over X under Whitney sum. Tensor product of bundles gives K-theory a commutative ring structure. Without subscripts, K(X) usually denotes complex K-theory whereas real K-theory is sometimes written as KO(X). The remaining discussion is focussed on complex K-theory.
As a first example, note that the K-theory of a point are the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the natural numbers are the integers.
There is also a reduced version of K-theory, , defined for X a compact pointed space (cf. reduced homology). This reduced theory is intuitively K(X) modulo trivial bundles. It is defined as the group of stable equivalence classes of bundles. Two bundles E and F are said to be stably isomorphic if there are trivial bundles ε1 and ε2, so that E ⊕ ε1 ≅ F ⊕ ε2. This equivalence relation results in a group since every vector bundle can be completed to a trivial bundle by summing with its orthogonal complement. Alternatively, can be defined as the kernel of the map K(X) → K({x0}) ≅ Z induced by the inclusion of the base point x0 into X.
K-theory forms a multiplicative (generalized) cohomology theory as follows. The short exact sequence of a pair of pointed spaces (X, A)
extends to a long exact sequence
Let Sn be the n-th reduced suspension of a space and then define
Negative indices are chosen so that the coboundary maps increase dimension.
It is often useful to have an unreduced version of these groups, simply by defining:
Here is with a disjoint basepoint labeled '+' adjoined.[1]
Finally, the Bott periodicity theorem as formulated below extends the theories to positive integers.
Properties
- Kn respectively is a contravariant functor from the homotopy category of (pointed) spaces to the category of commutative rings. Thus, for instance, the K-theory over contractible spaces is always Z.
- The spectrum of K-theory is BU × Z (with the discrete topology on Z), i.e. K(X) ≅ [X+, Z × BU], where [ , ] denotes pointed homotopy classes and BU is the colimit of the classifying spaces of the unitary groups: BU(n) ≅ Gr(n, C∞). Similarly,
- For real K-theory use BO.
- There is a natural ring homomorphism K 0(X) → H 2∗(X, Q), the Chern character, such that K 0(X) ⊗ Q → H 2∗(X, Q) is an isomorphism.
- The equivalent of the Steenrod operations in K-theory are the Adams operations. They can be used to define characteristic classes in topological K-theory.
- The Splitting principle of topological K-theory allows one to reduce statements about arbitrary vector bundles to statements about sums of line bundles.
- The Thom isomorphism theorem in topological K-theory is
- where T(E) is the Thom space of the vector bundle E over X. This holds whenever E is a spin-bundle.
- The Atiyah-Hirzebruch spectral sequence allows computation of K-groups from ordinary cohomology groups.
- Topological K-theory can be generalized vastly to a functor on C*-algebras, see operator K-theory and KK-theory.
Bott periodicity
The phenomenon of periodicity named after Raoul Bott (see Bott periodicity theorem) can be formulated this way:
- K(X × S2) = K(X) ⊗ K(S2), and K(S2) = Z[H]/(H − 1)2 where H is the class of the tautological bundle on S2 = P1(C), i.e. the Riemann sphere.
- Ω2BU ≅ BU × Z.
In real K-theory there is a similar periodicity, but modulo 8.
Applications
The two most famous applications of topological K-theory are both due to J. F. Adams. First he solved the Hopf invariant one problem by doing a computation with his Adams operations. Then he proved an upper bound for the number of linearly independent vector fields on spheres.
See also
References
- ↑ Hatcher. Vector Bundles and K-theory (PDF). p. 57. Retrieved 27 July 2017.
- Atiyah, Michael Francis (1989), K-theory, Advanced Book Classics (2nd ed.), Addison-Wesley, ISBN 978-0-201-09394-0, MR 1043170
- Friedlander, Eric; Grayson, Daniel, eds. (2005), Handbook of K-Theory, Berlin, New York: Springer-Verlag, ISBN 978-3-540-30436-4, MR 2182598
- Max Karoubi (1978), K-theory, an introduction Springer-Verlag
- Max Karoubi (2006), "K-theory. An elementary introduction", arXiv:math/0602082
- Allen Hatcher, Vector Bundles & K-Theory, (2003)