Isotopes of tin
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight (Ar) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay), which is probably related to the fact that 50 is a "magic number" of protons. 29 additional unstable isotopes are known, including the "doubly magic" tin-100 (100Sn) (discovered in 1994)[2] and tin-132 (132Sn). The longest-lived radioisotope is 126Sn, with a half-life of 230,000 years. The other 28 radioisotopes have half-lives less than a year.
Tin-121m
Tin-121m is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.
In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 121mSn at higher yields. For example, its yield from U-235 is 0.0007% per thermal fission and 0.002% per fast fission.[3]
Tin-126
Thermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 0.0481 ± 0.0077 | 0.87 ± 0.20 |
233U | 0.224 ± 0.018 | 0.278 ± 0.022 | 1.92 ± 0.31 |
235U | 0.056 ± 0.004 | 0.0137 ± 0.001 | 1.70 ± 0.14 |
238U | not fissile | 0.054 ± 0.004 | 1.31 ± 0.21 |
239Pu | 0.199 ± 0.016 | 0.26 ± 0.02 | 2.02 ± 0.22 |
241Pu | 0.082 ± 0.019 | 0.22 ± 0.03 | ? |
Tin-126 is a radioisotope of tin and one of only 7 long-lived fission products. While tin-126's halflife of 230,000 years translates to a low specific activity that limits its radioactive hazard, its short-lived decay product, antimony-126, emits high-energy gamma radiation, making external exposure to tin-126 a potential concern.
126Sn is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides like californium, will produce it at higher yields.
List of isotopes
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[4][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
99Sn[n 3] | 50 | 49 | 98.94933(64)# | 5# ms | 9/2+# | ||||
100Sn[n 4] | 50 | 50 | 99.93904(76) | 1.1(4) s [0.94(+54−27) s] |
β+ (83%) | 100In | 0+ | ||
β+, p (17%) | 99Cd | ||||||||
101Sn | 50 | 51 | 100.93606(32)# | 3(1) s | β+ | 101In | 5/2+# | ||
β+, p (rare) | 100Cd | ||||||||
102Sn | 50 | 52 | 101.93030(14) | 4.5(7) s | β+ | 102In | 0+ | ||
β+, p (rare) | 101Cd | ||||||||
102mSn | 2017(2) keV | 720(220) ns | (6+) | ||||||
103Sn | 50 | 53 | 102.92810(32)# | 7.0(6) s | β+ | 103In | 5/2+# | ||
β+, p (rare) | 102Cd | ||||||||
104Sn | 50 | 54 | 103.92314(11) | 20.8(5) s | β+ | 104In | 0+ | ||
105Sn | 50 | 55 | 104.92135(9) | 34(1) s | β+ | 105In | (5/2+) | ||
β+, p (rare) | 104Cd | ||||||||
106Sn | 50 | 56 | 105.91688(5) | 115(5) s | β+ | 106In | 0+ | ||
107Sn | 50 | 57 | 106.91564(9) | 2.90(5) min | β+ | 107In | (5/2+) | ||
108Sn | 50 | 58 | 107.911925(21) | 10.30(8) min | β+ | 108In | 0+ | ||
109Sn | 50 | 59 | 108.911283(11) | 18.0(2) min | β+ | 109In | 5/2(+) | ||
110Sn | 50 | 60 | 109.907843(15) | 4.11(10) h | EC | 110In | 0+ | ||
111Sn | 50 | 61 | 110.907734(7) | 35.3(6) min | β+ | 111In | 7/2+ | ||
111mSn | 254.72(8) keV | 12.5(10) µs | 1/2+ | ||||||
112Sn | 50 | 62 | 111.904818(5) | Observationally Stable[n 5] | 0+ | 0.0097(1) | |||
113Sn | 50 | 63 | 112.905171(4) | 115.09(3) d | β+ | 113In | 1/2+ | ||
113mSn | 77.386(19) keV | 21.4(4) min | IT (91.1%) | 113Sn | 7/2+ | ||||
β+ (8.9%) | 113In | ||||||||
114Sn | 50 | 64 | 113.902779(3) | Stable[n 6] | 0+ | 0.0066(1) | |||
114mSn | 3087.37(7) keV | 733(14) ns | 7− | ||||||
115Sn | 50 | 65 | 114.903342(3) | Stable[n 6] | 1/2+ | 0.0034(1) | |||
115m1Sn | 612.81(4) keV | 3.26(8) µs | 7/2+ | ||||||
115m2Sn | 713.64(12) keV | 159(1) µs | 11/2− | ||||||
116Sn | 50 | 66 | 115.901741(3) | Stable[n 6] | 0+ | 0.1454(9) | |||
117Sn | 50 | 67 | 116.902952(3) | Stable[n 6] | 1/2+ | 0.0768(7) | |||
117m1Sn | 314.58(4) keV | 13.76(4) d | IT | 117Sn | 11/2− | ||||
117m2Sn | 2406.4(4) keV | 1.75(7) µs | (19/2+) | ||||||
118Sn | 50 | 68 | 117.901603(3) | Stable[n 6] | 0+ | 0.2422(9) | |||
119Sn | 50 | 69 | 118.903308(3) | Stable[n 6] | 1/2+ | 0.0859(4) | |||
119m1Sn | 89.531(13) keV | 293.1(7) d | IT | 119Sn | 11/2− | ||||
119m2Sn | 2127.0(10) keV | 9.6(12) µs | (19/2+) | ||||||
120Sn | 50 | 70 | 119.9021947(27) | Stable[n 6] | 0+ | 0.3258(9) | |||
120m1Sn | 2481.63(6) keV | 11.8(5) µs | (7−) | ||||||
120m2Sn | 2902.22(22) keV | 6.26(11) µs | (10+)# | ||||||
121Sn[n 7] | 50 | 71 | 120.9042355(27) | 27.03(4) h | β− | 121Sb | 3/2+ | ||
121m1Sn | 6.30(6) keV | 43.9(5) y | IT (77.6%) | 121Sn | 11/2− | ||||
β− (22.4%) | 121Sb | ||||||||
121m2Sn | 1998.8(9) keV | 5.3(5) µs | (19/2+)# | ||||||
121m3Sn | 2834.6(18) keV | 0.167(25) µs | (27/2−) | ||||||
122Sn[n 7] | 50 | 72 | 121.9034390(29) | Observationally Stable[n 8] | 0+ | 0.0463(3) | |||
123Sn[n 7] | 50 | 73 | 122.9057208(29) | 129.2(4) d | β− | 123Sb | 11/2− | ||
123m1Sn | 24.6(4) keV | 40.06(1) min | β− | 123Sb | 3/2+ | ||||
123m2Sn | 1945.0(10) keV | 7.4(26) µs | (19/2+) | ||||||
123m3Sn | 2153.0(12) keV | 6 µs | (23/2+) | ||||||
123m4Sn | 2713.0(14) keV | 34 µs | (27/2−) | ||||||
124Sn[n 7] | 50 | 74 | 123.9052739(15) | Observationally Stable[n 9] | 0+ | 0.0579(5) | |||
124m1Sn | 2204.622(23) keV | 0.27(6) µs | 5- | ||||||
124m2Sn | 2325.01(4) keV | 3.1(5) µs | 7− | ||||||
124m3Sn | 2656.6(5) keV | 45(5) µs | (10+)# | ||||||
125Sn[n 7] | 50 | 75 | 124.9077841(16) | 9.64(3) d | β− | 125Sb | 11/2− | ||
125mSn | 27.50(14) keV | 9.52(5) min | 3/2+ | ||||||
126Sn[n 10] | 50 | 76 | 125.907653(11) | 2.30(14)×105 y | β− (66.5%) | 126m2Sb | 0+ | ||
β− (33.5%) | 126m1Sb | ||||||||
126m1Sn | 2218.99(8) keV | 6.6(14) µs | 7− | ||||||
126m2Sn | 2564.5(5) keV | 7.7(5) µs | (10+)# | ||||||
127Sn | 50 | 77 | 126.910360(26) | 2.10(4) h | β− | 127Sb | (11/2−) | ||
127mSn | 4.7(3) keV | 4.13(3) min | β− | 127Sb | (3/2+) | ||||
128Sn | 50 | 78 | 127.910537(29) | 59.07(14) min | β− | 128Sb | 0+ | ||
128mSn | 2091.50(11) keV | 6.5(5) s | IT | 128Sn | (7−) | ||||
129Sn | 50 | 79 | 128.91348(3) | 2.23(4) min | β− | 129Sb | (3/2+)# | ||
129mSn | 35.2(3) keV | 6.9(1) min | β− (99.99%) | 129Sb | (11/2−)# | ||||
IT (.002%) | 129Sn | ||||||||
130Sn | 50 | 80 | 129.913967(11) | 3.72(7) min | β− | 130Sb | 0+ | ||
130m1Sn | 1946.88(10) keV | 1.7(1) min | β− | 130Sb | (7−)# | ||||
130m2Sn | 2434.79(12) keV | 1.61(15) µs | (10+) | ||||||
131Sn | 50 | 81 | 130.917000(23) | 56.0(5) s | β− | 131Sb | (3/2+) | ||
131m1Sn | 80(30)# keV | 58.4(5) s | β− (99.99%) | 131Sb | (11/2−) | ||||
IT (.0004%) | 131Sn | ||||||||
131m2Sn | 4846.7(9) keV | 300(20) ns | (19/2− to 23/2−) | ||||||
132Sn | 50 | 82 | 131.917816(15) | 39.7(8) s | β− | 132Sb | 0+ | ||
133Sn | 50 | 83 | 132.92383(4) | 1.45(3) s | β− (99.97%) | 133Sb | (7/2−)# | ||
β−, n (.0294%) | 132Sb | ||||||||
134Sn | 50 | 84 | 133.92829(11) | 1.050(11) s | β− (83%) | 134Sb | 0+ | ||
β−, n (17%) | 133Sb | ||||||||
135Sn | 50 | 85 | 134.93473(43)# | 530(20) ms | β− | 135Sb | (7/2−) | ||
β−, n | 134Sb | ||||||||
136Sn | 50 | 86 | 135.93934(54)# | 0.25(3) s | β− | 136Sb | 0+ | ||
β−, n | 135Sb | ||||||||
137Sn | 50 | 87 | 136.94599(64)# | 190(60) ms | β− | 137Sb | 5/2−# |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Heaviest known nuclide with more protons than neutrons
- ↑ Heaviest known nuclide with equal numbers of protons and neutrons
- ↑ Believed to decay by β+β+ to 112Cd
- 1 2 3 4 5 6 7 Theoretically capable of spontaneous fission
- 1 2 3 4 5 Fission product
- ↑ Believed to undergo β−β− decay to 122Te
- ↑ Believed to undergo β−β− decay to 124Te with a half-life over 100×1015 years
- ↑ Long-lived fission product
Notes
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
References
- ↑ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure Appl. Chem. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
- ↑ K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg,; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. doi:10.1016/S0375-9474(97)00106-1.
- 1 2 M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
- ↑ "Universal Nuclide Chart". nucleonica. (Registration required (help)).
- Isotope masses from:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Archived from the original (PDF) on 2008-09-23.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005. Check date values in:
|access-date=
(help) - N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of indium | Isotopes of tin | Isotopes of antimony |
Table of nuclides |