Timing attack

In cryptography, a timing attack is a side channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms. Every logical operation in a computer takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, an attacker can work backwards to the input.[1]

Information can leak from a system through measurement of the time it takes to respond to certain queries. How much such information can help an attacker depends on many variables: crypto system design, the CPU running the system, the algorithms used, assorted implementation details, timing attack countermeasures, the accuracy of the timing measurements, etc.

Timing attacks are often overlooked in the design phase because they are so dependent on the implementation and can be introduced inadvertently with compiler optimizations. Avoidance of timing attacks involves design of constant-time functions and careful testing of the final executable code.[1]

Concept

A timing attack is an example of an attack that exploits the data-dependent behavioral characteristics of the implementation of an algorithm rather than the mathematical properties of the algorithm itself.

Many cryptographic algorithms can be implemented (or masked by a proxy) in a way that reduces or eliminates data dependent timing information: consider an implementation in which every call to a subroutine always returns in exactly x seconds, where x is the maximum time it ever takes to execute that routine on every possible authorised input. In such an implementation, the timing of the algorithm leaks no information about the data supplied to that invocation. The downside of this approach is that the time to execute many invocations increases from the average performance of the function to the worst-case performance of the function.

Timing attacks are practical in many cases:

Examples

The execution time for the square-and-multiply algorithm used in modular exponentiation depends linearly on the number of '1' bits in the key. While the number of '1' bits alone is not nearly enough information to make finding the key trivially easy, repeated executions with the same key and different inputs can be used to perform statistical correlation analysis of timing information to recover the key completely, even by a passive attacker. Observed timing measurements often include noise (from such sources as network latency, or disk drive access differences from access to access, and the error correction techniques used to recover from transmission errors). Nevertheless, timing attacks are practical against a number of encryption algorithms, including RSA, ElGamal, and the Digital Signature Algorithm.

In 2003, Boneh and Brumley demonstrated a practical network-based timing attack on SSL-enabled web servers, based on a different vulnerability having to do with the use of RSA with Chinese remainder theorem optimizations. The actual network distance was small in their experiments, but the attack successfully recovered a server private key in a matter of hours. This demonstration led to the widespread deployment and use of blinding techniques in SSL implementations. In this context, blinding is intended to remove correlations between key and encryption time.

Some versions of Unix use a relatively expensive implementation of the crypt library function for hashing an 8-character password into an 11-character string. On older hardware, this computation took a deliberately and measurably long time: as much as two or three seconds in some cases. The login program in early versions of Unix executed the crypt function only when the login name was recognized by the system. This leaked information through timing about the validity of the login name, even when the password was incorrect. An attacker could exploit such leaks by first applying brute-force to produce a list of login names known to be valid, then attempt to gain access by combining only these names with a large set of passwords known to be frequently used. Without any information on the validity of login names the time needed to execute such an approach would increase by orders of magnitude, effectively rendering it useless. Later versions of Unix have fixed this leak by always executing the crypt function, regardless of login name validity.

Two otherwise securely isolated processes running on a single system with either cache memory or virtual memory can communicate by deliberately causing page faults and/or cache misses in one process, then monitoring the resulting changes in access times from the other. Likewise, if an application is trusted, but its paging/caching is affected by branching logic, it may be possible for a second application to determine the values of the data compared to the branch condition by monitoring access time changes; in extreme examples, this can allow recovery of cryptographic key bits.[2][3]

The following Visual Basic code demonstrates a typical insecure string comparison which stops testing as soon as a character doesn't match. For example, when comparing "ABCDE" with "ABxDE" it will return after 3 loop iterations:

Function InsecureCompare(StrA As String, StrB As String, length As Integer) As Boolean
 Dim result As Boolean
 For i = 1 To length
  If Mid(StrA, i, 1) <> Mid(StrB, i, 1) Then Exit For
 Next
 InsecureCompare = (i > length)
End Function

By comparison, the following version runs in constant-time by testing all characters and using bitwise operations to test without conditional jumps:

Function SecureCompare(StrA As String, StrB As String, length As Integer) As Boolean
 Dim result As Boolean
 For i = 1 To length
  result = result Or (Asc(Mid(StrA, i, 1)) Xor Asc(Mid(StrB, i, 1)))
 Next
 SecureCompare = Not result
End Function

Notes

Timing attacks are easier to mount if the adversary knows the internals of the hardware implementation, and even more so, the crypto system in use. Since cryptographic security should never depend on the obscurity of either (see security through obscurity, specifically both Shannon's Maxim and Kerckhoffs' principle), resistance to timing attacks should not either. If nothing else, an exemplar can be purchased and reverse engineered. Timing attacks and other side-channel attacks may also be useful in identifying, or possibly reverse-engineering, a cryptographic algorithm used by some device.

References

  1. 1 2 "BearSSL - Constant-Time Crypto". www.bearssl.org. Retrieved 2017-01-10.
  2. See Percival, Colin, Cache Missing for Fun and Profit, 2005.
  3. Bernstein, Daniel J., Cache-timing attacks on AES, 2005.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.