Thrombolysis

Thrombolysis

Thrombolysis is the breakdown (lysis) of blood clots formed in blood vessels, using medication. It is used in ST elevation myocardial infarction, stroke, and very large pulmonary embolisms.

The main complication is bleeding (which can be dangerous), and in some situations thrombolysis may therefore be unsuitable. Thrombolysis can also play an important part in reperfusion therapy that deals specifically with blocked arteries.

Medical uses

Diseases where thrombolysis is used:

Apart from streptokinase, all thrombolytic drugs are administered together with heparin (unfractionated or low molecular weight heparin), usually for 24 to 48 hours.

Thrombolysis is usually intravenous. It may also be used directly into the affected blood vessel during an angiogram (intra-arterial thrombolysis), e.g. when patients present with stroke beyond three hours or in severe deep vein thrombosis (catheter-directed thrombolysis).[6]

Thrombolysis is performed by many types of medical specialists, including interventional radiologists, vascular surgeons, cardiologists, interventional neuroradiologists, and neurosurgeons. In some countries such as the United States of America, emergency medical technicians may administer thrombolytics for heart attacks in prehospital settings, by on-line medical direction. In countries with more extensive and independent qualifications, prehospital thrombolysis (fibrinolysis) may be initiated by the emergency care practitioner (ECP). Other countries which employ ECP's include, South Africa, the United Kingdom, and New Zealand. Prehospital thrombolysis is always the result of a risk-benefit calculation of the heart attack, thrombolysis risks, and primary percutaneous coronary intervention (pPCI) availability.

Contraindications

Thrombolysis is not without risks. Therefore, clinicians must select patients who are to be best suited for the procedure, and those who have the least risk of having a fatal complication. An absolute contraindication is in itself enough to avoid thrombolysis, while a relative contraindication needs to be considered in relation to the overall clinical situation.

Myocardial infarction

Absolute contraindications[7]

Relative contraindications[7]

Major surgery, trauma, or bleeding within 2 weeks

Stroke

Absolute contraindications:[8]

Relative contraindications:[9]

Side-effects

Hemorrhagic stroke is a rare but serious complication of thrombolytic therapy. If a patient has had thrombolysis before, an allergy against the thrombolytic drug may have developed (especially after streptokinase). If the symptoms are mild, the infusion is stopped and the patient is commenced on an antihistamine before infusion is recommenced. Anaphylaxis generally requires immediate cessation of thrombolysis.

Agents

Thrombolysis therapy uses thrombolytic drugs that dissolve blood clots. Most of these drugs target fibrin (one of the main constituent of blood clots) and are therefore called fibrinolytics. These drugs are either derived from Streptococcus species, or, more recently, using recombinant biotechnology whereby tPA is manufactured using cell culture, resulting in a recombinant tissue plasminogen activator or rtPA.

Some fibrinolytics are:

Research

In people who receive thrombolytic therapy delivered through a catheter, there is a risk of hemorrhage as a side effect. Scientists have studied whether measuring fibrinogen in blood can be used as a biomarker to predict hemorrhage. As of 2017 it was not known if this works or not.[12]

See also

References

  1. "Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group.". Lancet (London, England). 343 (8893): 311–22. 5 February 1994. PMID 7905143.
  2. Wardlaw JM, Murray V, Berge E, Del Zoppo GJ (2009). "Thrombolysis for acute ischaemic stroke". Cochrane Database Syst Rev (4): CD000213. PMID 19821269. doi:10.1002/14651858.CD000213.pub2.
  3. Wechsler LR (2011 Jun 2). "Intravenous thrombolytic therapy for acute ischemic stroke". N Engl J Med. 364 (22): 2138–46. PMID 21631326. doi:10.1056/NEJMct1007370. Check date values in: |date= (help)
  4. Mistry EA (26 July 2017). "Mechanical Thrombectomy Outcomes With and Without Intravenous Thrombolysis in Stroke Patients: A Meta-Analysis". Stroke. 48 (9). PMID 28747462. doi:10.1161/STROKEAHA.117.017320.
  5. Kuo WT1, Gould MK, Louie JD, Rosenberg JK, Sze DY, Hofmann LV. Catheter-directed therapy for the treatment of massive pulmonary embolism: systematic review and meta-analysis of modern techniques. J Vasc Interv Radiol. 2009 Nov;20(11):1431-40. doi: 10.1016/j.jvir.2009.08.002. PMID 19875060.
  6. Catanese L, Tarsia J, Fisher M (2017 Feb 3). "Acute Ischemic Stroke Therapy Overview". Circ Res. 120 (3): 541–558. PMID 28154103. doi:10.1161/CIRCRESAHA.116.309278. Check date values in: |date= (help)
  7. 1 2 Harvey D. White; Frans J. J. Van de Werf (1998). "Clinical Cardiology: New Frontiers Thrombolysis for Acute Myocardial Infarction". Circulation. 97 (16): 1632–1646. PMID 9593569. doi:10.1161/01.CIR.97.16.1632.
  8. Department of Health, Western Australia. "Protocol for Administering Alteplase in Acute Ischaemic Stroke Guidelines." (PDF). Perth: Health Networks Branch, Department of Health, Western Australia. Retrieved 2013-06-12.
  9. Jason Thurman; Edward C. Jauch (2002). "Acute ischemic stroke: emergent evaluation and management". Emergency Medicine Clinics of North America. 20 (3): 609–630. doi:10.1016/s0733-8627(02)00014-7.
  10. 1 2 3 4 "Therapeutic Biologic Applications (BLA) > Difficulties in Obtaining Sufficient Amounts of Urokinase (Abbokinase)". US Food and Drug Administration. 10/07/2016. Retrieved 2016-12-28. Check date values in: |date= (help)
  11. 1 2 "Therapeutic Biologics Applications (BLA)". US Food and Drug Administration. 07-10- 2016. Retrieved 2016-12-28. Check date values in: |date= (help)
  12. Poorthuis, Michiel H. F.; Brand, Eelco C.; Hazenberg, Constantijn E. V. B.; Schutgens, Roger E. G.; Westerink, Jan; Moll, Frans L.; de Borst, Gert J. (2017-03-05). "Plasma fibrinogen level as a potential predictor of hemorrhagic complications after catheter-directed thrombolysis for peripheral arterial occlusions". Journal of Vascular Surgery. 65 (5): 1519–1527.e26. ISSN 1097-6809. PMID 28274749. doi:10.1016/j.jvs.2016.11.025.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.