Thought experiment

Schrödinger's cat (1935) presents a cat that is indeterminately alive or dead, depending on a random quantum event. It illustrates the counterintuitive implications of Bohr's Copenhagen interpretation when applied to everyday objects.

A thought experiment (German: Gedankenexperiment,[1] Gedanken experiment[2] or Gedankenerfahrung[3]) considers some hypothesis, theory,[4] or principle for the purpose of thinking through its consequences. Given the structure of the experiment, it may not be possible to perform it, and even if it could be performed, there need not be an intention to perform it.

The common goal of a thought experiment is to explore the potential consequences of the principle in question: "A thought experiment is a device with which one performs an intentional, structured process of intellectual deliberation in order to speculate, within a specifiable problem domain, about potential consequents (or antecedents) for a designated antecedent (or consequent)" (Yeates, 2004, p. 150).

Examples of thought experiments include Schrödinger's cat, illustrating quantum indeterminacy through the manipulation of a perfectly sealed environment and a tiny bit of radioactive substance, and Maxwell's demon, which attempts to demonstrate the ability of a hypothetical finite being to violate the 2nd law of thermodynamics.

Overview

The ancient Greek δείκνυμι (transl.: deiknymi), or thought experiment, "was the most ancient pattern of mathematical proof", and existed before Euclidean mathematics,[5] where the emphasis was on the conceptual, rather than on the experimental part of a thought-experiment. Perhaps the key experiment in the history of modern science is Galileo's demonstration that falling objects must fall at the same rate regardless of their masses. This is widely thought[6] to have been a straightforward physical demonstration, involving climbing up the Leaning Tower of Pisa and dropping two heavy weights off it, whereas in fact, it was a logical demonstration, using the 'thought experiment' technique. The 'experiment' is described by Galileo in Discorsi e dimostrazioni matematiche (1638) (literally, 'Discourses and Mathematical Demonstrations') thus:

Salviati. If then we take two bodies whose natural speeds are different, it is clear that on uniting the two, the more rapid one will be partly retarded by the slower, and the slower will be somewhat hastened by the swifter. Do you not agree with me in this opinion?

Simplicio. You are unquestionably right.

Salviati. But if this is true, and if a large stone moves with a speed of, say, eight while a smaller moves with a speed of four, then when they are united, the system will move with a speed less than eight; but the two stones when tied together make a stone larger than that which before moved with a speed of eight. Hence the heavier body moves with less speed than the lighter; an effect which is contrary to your supposition. Thus you see how, from your assumption that the heavier body moves more rapidly than the lighter one, I infer that the heavier body moves more slowly.[7]

Although the extract does not convey the elegance and power of the 'demonstration' terribly well, it is clear that it is a 'thought' experiment, rather than a practical one. Strange then, as Cohen says, that philosophers and scientists alike refuse to acknowledge either Galileo in particular, or the thought experiment technique in general for its pivotal role in both science and philosophy. (The exception proves the rule — the iconoclastic philosopher of science, Paul Feyerabend, has also observed this methodological prejudice.[8])

Instead, many philosophers prefer to consider 'Thought Experiments' to be merely the use of a hypothetical scenario to help understand the way things are.

Variety

Thought experiments have been used in a variety of fields, including philosophy, law, physics, and mathematics. In philosophy, they have been used at least since classical antiquity, some pre-dating Socrates. In law, they were well-known to Roman lawyers quoted in the Digest.[9] In physics and other sciences, notable thought experiments date from the 19th and especially the 20th century, but examples can be found at least as early as Galileo.

Origins and use of the literal term

Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the Latin-German mixed term Gedankenexperiment (lit. thought experiment) circa 1812.[10] Ørsted was also the first to use its entirely German equivalent, Gedankenversuch, in 1820.

Much later, Ernst Mach used the term Gedankenexperiment in a different way, to denote exclusively the imaginary conduct of a real experiment that would be subsequently performed as a real physical experiment by his students.[11] Physical and mental experimentation could then be contrasted: Mach asked his students to provide him with explanations whenever the results from their subsequent, real, physical experiment differed from those of their prior, imaginary experiment.

The English term thought experiment was coined (as a calque) from Mach's Gedankenexperiment, and it first appeared in the 1897 English translation of one of Mach’s papers.[12] Prior to its emergence, the activity of posing hypothetical questions that employed subjunctive reasoning had existed for a very long time (for both scientists and philosophers). However, people had no way of categorizing it or speaking about it. This helps to explain the extremely wide and diverse range of the application of the term "thought experiment" once it had been introduced into English.

Uses

Thought experiments, which are well-structured, well-defined hypothetical questions that employ subjunctive reasoning (irrealis moods) – "What might happen (or, what might have happened) if . . . " – have been used to pose questions in philosophy at least since Greek antiquity, some pre-dating Socrates.[13] In physics and other sciences many thought experiments date from the 19th and especially the 20th Century, but examples can be found at least as early as Galileo.

In thought experiments we gain new information by rearranging or reorganizing already known empirical data in a new way and drawing new (a priori) inferences from them or by looking at these data from a different and unusual perspective. In Galileo’s thought experiment, for example, the rearrangement of empirical experience consists in the original idea of combining bodies of different weight.[14]

Thought experiments have been used in philosophy (especially ethics), physics, and other fields (such as cognitive psychology, history, political science, economics, social psychology, law, organizational studies, marketing, and epidemiology). In law, the synonym "hypothetical" is frequently used for such experiments.

Regardless of their intended goal, all thought experiments display a patterned way of thinking that is designed to allow us to explain, predict and control events in a better and more productive way.

Theoretical consequences

In terms of their theoretical consequences, thought experiments generally:

Practical applications

Thought experiments can produce some very important and different outlooks on previously unknown or unaccepted theories. However, they may make those theories themselves irrelevant, and could possibly create new problems that are just as difficult, or possibly more difficult to resolve.

In terms of their practical application, thought experiments are generally created to:

In science

Scientists tend to use thought experiments as imaginary, "proxy" experiments prior to a real, "physical" experiment (Ernst Mach always argued that these gedankenexperiments were "a necessary precondition for physical experiment"). In these cases, the result of the "proxy" experiment will often be so clear that there will be no need to conduct a physical experiment at all.

Scientists also use thought experiments when particular physical experiments are impossible to conduct (Carl Gustav Hempel labeled these sorts of experiment "theoretical experiments-in-imagination"), such as Einstein's thought experiment of chasing a light beam, leading to Special Relativity. This is a unique use of a scientific thought experiment, in that it was never carried out, but led to a successful theory, proven by other empirical means.

Relation to real experiments

The relation to real experiments can be quite complex, as can be seen again from an example going back to Albert Einstein. In 1935, with two coworkers, he published a paper on a newly created subject called later the EPR effect (EPR paradox). In this paper, starting from certain philosophical assumptions,[15] on the basis of a rigorous analysis of a certain, complicated, but in the meantime assertedly realizable model, he came to the conclusion that quantum mechanics should be described as "incomplete". Niels Bohr asserted a refutation of Einstein's analysis immediately, and his view prevailed.[16][17][18] After some decades, it was asserted that feasible experiments could prove the error of the EPR paper. These experiments tested the Bell inequalities published in 1964 in a purely theoretical paper. The above-mentioned EPR philosophical starting assumptions were considered to be falsified by empirical fact (e.g. by the optical real experiments of Alain Aspect).

Thus thought experiments belong to a theoretical discipline, usually to theoretical physics, but often to theoretical philosophy. In any case, it must be distinguished from a real experiment, which belongs naturally to the experimental discipline and has "the final decision on true or not true", at least in physics.

Causal reasoning

The first characteristic pattern that thought experiments display is their orientation in time.[19] They are either:

The second characteristic pattern is their movement in time in relation to “the present moment standpoint” of the individual performing the experiment; namely, in terms of:

(a) in the case of past-oriented thought experiments, are they examining the consequences of temporal “movement” from the present to the past, or from the past to the present? or,
(b) in the case of future-oriented thought experiments, are they examining the consequences of temporal “movement” from the present to the future, or from the future to the present?

Seven types

Temporal representation of a prefactual thought experiment.[20]

Generally speaking, there are seven types of thought experiments in which one reasons from causes to effects, or effects to causes:[21]

Prefactual

Prefactual (before the fact) thought experiments — the term prefactual was coined by Lawrence J. Sanna in 1998[22] — speculate on possible future outcomes, given the present, and ask "What will be the outcome if event E occurs?"

Counterfactual

Temporal representation of a counterfactual thought experiment.[23]

Counterfactual (contrary to established fact) thought experiments — the term counterfactual was coined by Nelson Goodman in 1947,[24] extending Roderick Chisholm's (1946) notion of a "contrary-to-fact conditional"[25] — speculate on the possible outcomes of a different past;[26] and ask "What might have happened if A had happened instead of B?" (e.g., "If Isaac Newton and Gottfried Leibniz had cooperated with each other, what would mathematics look like today?").[27]

The study of counterfactual speculation has increasingly engaged the interest of scholars in a wide range of domains such as philosophy,[28] psychology,[29] cognitive psychology,[30] history,[31] political science,[32] economics,[33] social psychology,[34] law,[35] organizational theory,[36] marketing,[37] and epidemiology.[38]

Semifactual

Temporal representation of a semifactual thought experiment.[39]

Semifactual thought experiments — the term semifactual was coined by Nelson Goodman in 1947[40][41] — speculate on the extent to which things might have remained the same, despite there being a different past; and asks the question Even though X happened instead of E, would Y have still occurred? (e.g., Even if the goalie had moved left, rather than right, could he have intercepted a ball that was traveling at such a speed?).

Semifactual speculations are an important part of clinical medicine.

Prediction

Temporal representation of prediction, forecasting and nowcasting.[42]

The activity of prediction attempts to project the circumstances of the present into the future. According to David Sarewitz and Roger Pielke (1999, p123), scientific prediction takes two forms:

(1) “The elucidation of invariant — and therefore predictive — principles of nature”; and
(2) “[Using] suites of observational data and sophisticated numerical models in an effort to foretell the behavior or evolution of complex phenomena”.[43]

Although they perform different social and scientific functions, the only difference between the qualitatively identical activities of predicting, forecasting, and nowcasting is the distance of the speculated future from the present moment occupied by the user.[44] Whilst the activity of nowcasting, defined as “a detailed description of the current weather along with forecasts obtained by extrapolation up to 2 hours ahead”, is essentially concerned with describing the current state of affairs, it is common practice to extend the term “to cover very-short-range forecasting up to 12 hours ahead” (Browning, 1982, p.ix).[45][46]

Hindcasting

Temporal representation of hindcasting.[47]

The activity of hindcasting involves running a forecast model after an event has happened in order to test whether the model's simulation is valid.

In 2003, Dake Chen and his colleagues “trained” a computer using the data of the surface temperature of the oceans from the last 20 years.[48] Then, using data that had been collected on the surface temperature of the oceans for the period 1857 to 2003, they went through a hindcasting exercise and discovered that their simulation not only accurately predicted every El Niño event for the last 148 years, it also identified the (up to 2 years) looming foreshadow of every single one of those El Niño events.[49]

Retrodiction

Temporal representation of retrodiction or postdiction.[50]

The activity of retrodiction (or postdiction) involves moving backwards in time, step-by-step, in as many stages as are considered necessary, from the present into the speculated past to establish the ultimate cause of a specific event (e.g., reverse engineering and forensics).

Given that retrodiction is a process in which "past observations, events and data are used as evidence to infer the process(es) the produced them" and that diagnosis "involve[s] going from visible effects such as symptoms, signs and the like to their prior causes",[51] the essential balance between prediction and retrodiction could be characterized as:

retrodiction : diagnosis :: prediction : prognosis

regardless of whether the prognosis is of the course of the disease in the absence of treatment, or of the application of a specific treatment regimen to a specific disorder in a particular patient.[52]

Backcasting

Temporal representation of backcasting.[53]

The activity of backcasting — the term backcasting was coined by John Robinson in 1982[54] — involves establishing the description of a very definite and very specific future situation. It then involves an imaginary moving backwards in time, step-by-step, in as many stages as are considered necessary, from the future to the present to reveal the mechanism through which that particular specified future could be attained from the present.[55]

Backcasting is not concerned with predicting the future:

The major distinguishing characteristic of backcasting analyses is the concern, not with likely energy futures, but with how desirable futures can be attained. It is thus explicitly normative, involving 'working backwards' from a particular future end-point to the present to determine what policy measures would be required to reach that future.[56]

According to Jansen (1994, p. 503:[57]

Within the framework of technological development, “forecasting” concerns the extrapolation of developments towards the future and the exploration of achievements that can be realized through technology in the long term. Conversely, the reasoning behind “backcasting” is: on the basis of an interconnecting picture of demands technology must meet in the future — “sustainability criteria” — to direct and determine the process that technology development must take and possibly also the pace at which this development process must take effect.
Backcasting [is] both an important aid in determining the direction technology development must take and in specifying the targets to be set for this purpose. As such, backcasting is an ideal search toward determining the nature and scope of the technological challenge posed by sustainable development, and it can thus serve to direct the search process toward new — sustainable — technology.

In philosophy

In philosophy, a thought experiment typically presents an imagined scenario with the intention of eliciting an intuitive or reasoned response about the way things are in the thought experiment. (Philosophers might also supplement their thought experiments with theoretical reasoning designed to support the desired intuitive response.) The scenario will typically be designed to target a particular philosophical notion, such as morality, or the nature of the mind or linguistic reference. The response to the imagined scenario is supposed to tell us about the nature of that notion in any scenario, real or imagined.

For example, a thought experiment might present a situation in which an agent intentionally kills an innocent for the benefit of others. Here, the relevant question is not whether the action is moral or not, but more broadly whether a moral theory is correct that says morality is determined solely by an action's consequences (See Consequentialism). John Searle imagines a man in a locked room who receives written sentences in Chinese, and returns written sentences in Chinese, according to a sophisticated instruction manual. Here, the relevant question is not whether or not the man understands Chinese, but more broadly, whether a functionalist theory of mind is correct.

It is generally hoped that there is universal agreement about the intuitions that a thought experiment elicits. (Hence, in assessing their own thought experiments, philosophers may appeal to "what we should say," or some such locution.) A successful thought experiment will be one in which intuitions about it are widely shared. But often, philosophers differ in their intuitions about the scenario.

Other philosophical uses of imagined scenarios arguably are thought experiments also. In one use of scenarios, philosophers might imagine persons in a particular situation (maybe ourselves), and ask what they would do.

For example, in the veil of ignorance, John Rawls asks us to imagine a group of persons in a situation where they know nothing about themselves, and are charged with devising a social or political organization. The use of the state of nature to imagine the origins of government, as by Thomas Hobbes and John Locke, may also be considered a thought experiment. Søren Kierkegaard explored the possible ethical and religious implications of Abraham's binding of Isaac in Fear and Trembling Similarly, Friedrich Nietzsche, in On the Genealogy of Morals, speculated about the historical development of Judeo-Christian morality, with the intent of questioning its legitimacy.

An early written thought experiment was Plato's allegory of the cave.[58] Another historic thought experiment was Avicenna's "Floating Man" thought experiment in the 11th century. He asked his readers to imagine themselves suspended in the air isolated from all sensations in order to demonstrate human self-awareness and self-consciousness, and the substantiality of the soul.[59]

Possibility

The scenario presented in a thought experiment must be possible in some sense. In many thought experiments, the scenario would be nomologically possible, or possible according to the laws of nature. John Searle's Chinese room is nomologically possible.

Some thought experiments present scenarios that are not nomologically possible. In his Twin Earth thought experiment, Hilary Putnam asks us to imagine a scenario in which there is a substance with all of the observable properties of water (e.g., taste, color, boiling point), but is chemically different from water. It has been argued that this thought experiment is not nomologically possible, although it may be possible in some other sense, such as metaphysical possibility. It is debatable whether the nomological impossibility of a thought experiment renders intuitions about it moot.

In some cases, the hypothetical scenario might be considered metaphysically impossible, or impossible in any sense at all. David Chalmers says that we can imagine that there are zombies, or persons who are physically identical to us in every way but who lack consciousness. This is supposed to show that physicalism is false. However, some argue that zombies are inconceivable: we can no more imagine a zombie than we can imagine that 1+1=3. Others have claimed that the conceivability of a scenario may not entail its possibility.

Examples

Physics

Philosophy

Mathematics


Biology

Computer science

Economics

See also

References

  1. Perkowitz, Sidney (February 12, 2010). "Gedankenexperiment". Encyclopædia Britannica Online. Retrieved March 27, 2017.
  2. See occurrences on Google Books.
  3. Robert Brown, James (August 12, 2014). "Thought Experiments". Stanford Encyclopedia of Philosophy. Retrieved March 27, 2017.
  4. "[C]onjectures or hypotheses ... are really to be regarded as thought "experiments" through which we wish to discover whether something can be explained by a specific assumption in connection with other natural laws." Hans Christian Ørsted("First Introduction to General Physics" ¶16-¶18, part of a series of public lectures at the University of Copenhagen. Copenhagen 1811, in Danish, printed by Johan Frederik Schulz. In Kirstine Meyer's 1920 edition of Ørsted's works, vol.III pp. 151-190. ) "First Introduction to Physics: the Spirit, Meaning, and Goal of Natural Science". Reprinted in German in 1822, Schweigger's Journal für Chemie und Physik 36, pp. 458–488, as translated in Ørsted 1997, pp. 296–298
  5. Szábo, Árpád. (1958) " 'Deiknymi' als Mathematischer Terminus fur 'Beweisen' ", Maia N.S. 10 pp. 1–26 as cited by Imre Lakatos (1976) in Proofs and Refutations p.9. (John Worrall and Elie Zahar, eds.) Cambridge University Press ISBN 0-521-21078-X. The English translation of the title of Szábo's article is "'Deiknymi' as a mathematical expression for 'to prove'", as translated by András Máté, p.285
  6. Cohen, Martin, "Wittgenstein's Beetle and Other Classic Thought Experiments", Blackwell, (Oxford), 2005, pp. 55–56.
  7. "Galileo on Aristotle and Acceleration". Retrieved 2008-05-24.
  8. See, for example, Paul Feyerabend, 'Against Method', Verso (1993)
  9. Catholic Encyclopedia (1913)/Pandects "every logical rule of law is capable of illumination from the law of the Pandects."
  10. Witt-Hansen (1976). Although Experiment is a German word, it is derived from Latin. The synonym Versuch has purely Germanic roots.
  11. Mach, Ernst (1883), The Science of Mechanics (6th edition, translated by Thomas J. McCormack), LaSalle, Illinois: Open Court, 1960. pp. 32-41, 159-62.
  12. Mach, Ernst (1897), "On Thought Experiments", in Knowledge and Error (translated by Thomas J. McCormack and Paul Foulkes), Dordrecht Holland: Reidel, 1976, pp. 134-47.
  13. Rescher, N. (1991), "Thought Experiment in Pre-Socratic Philosophy", in Horowitz, T.; Massey, G.J., Thought Experiments in Science and Philosophy, Rowman & Littlefield, (Savage), pp. 31–41.
  14. Brendal, Elke, "Intuition Pumps and the Proper Use of Thought Experiments". Dialectica. V.58, Issue 1, p 89–108, March 2004
  15. Jaynes, E.T. (1989).Clearing up the Mysteries, opening talk at the 8th International MAXENT Workshop, St John's College, Cambridge UK.
  16. French, A.P., Taylor, E.F. (1979/1989). An Introduction to Quantum Physics, Van Nostrand Reinhold (International), London, ISBN 0-442-30770-5.
  17. Wheeler, J.A, Zurek, W.H., editors (1983). Quantum Theory and Measurement, Princeton University Press, Princeton.
  18. d'Espagnat, B. (2006). On Physics and Philosophy, Princeton University Press, Princeton, ISBN 978-0-691-11964-9
  19. Yeates, 2004, pp.138-143.
  20. Taken from Yeates, 2004, p.143.
  21. See Yeates, 2004, pp.138-159.
  22. Sanna, L.J., "Defensive Pessimism and Optimism: The Bitter-Sweet Influence of Mood on Performance and Prefactual and Counterfactual Thinking", Cognition and Emotion, Vol.12, No.5, (September 1998), pp.635-665. (Sanna used the term prefactual to distinguish these sorts of thought experiment from both semifactuals and counterfactuals.)
  23. Taken from Yeates, 2004, p.144.
  24. Goodman, N., "The Problem of Counterfactual Conditionals", The Journal of Philosophy, Vol.44, No.5, (27 February 1947), pp.113-128.
  25. Chisholm, R.M., "The Contrary-to-Fact Conditional", Mind, Vol.55, No.220, (October 1946), pp.289-307.
  26. Roger Penrose (Shadows of the Mind: A Search for the Missing Science of Consciousness, Oxford University Press, (Oxford),1994, p.240) considers counterfactuals to be "things that might have happened, although they did not in fact happen".
  27. In 1748, when defining causation, David Hume referred to a counterfactual case: "…we may define a cause to be an object, followed by another, and where all objects, similar to the first, are followed by objects similar to the second. Or in other words, where, if the first object had not been, the second never had existed …" (Hume, D. (Beauchamp, T.L., ed.), An Enquiry Concerning Human Understanding, Oxford University Press, (Oxford), 1999, (7), p.146.)
  28. Goodman, N., "The Problem of Counterfactual Conditionals", The Journal of Philosophy, Vol.44, No.5, (27 February 1947), pp.113-128; Brown, R, & Watling, J., "Counterfactual Conditionals", Mind, Vol.61, No.242, (April 1952), pp.222-233; Parry, W.T., "Reëxamination of the Problem of Counterfactual Conditionals", The Journal of Philosophy, Vol.54, No.4, (14 February 1957), pp.85-94; Cooley, J.C., "Professor Goodman’s Fact, Fiction, & Forecast", The Journal of Philosophy, Vol.54, No.10, (9 May 1957), pp.293-311; Goodman, N., "Parry on Counterfactuals", The Journal of Philosophy, Vol.54, No.14, (4 July 1957), pp.442-445; Goodman, N., "Reply to an Adverse Ally", The Journal of Philosophy, Vol.54, No.17, (15 August 1957), pp.531-535; Lewis, D., Counterfactuals, Basil Blackwell, (Oxford), 1973, etc.
  29. Fillenbaum, S., "Information Amplified: Memory for Counterfactual Conditionals", Journal of Experimental Psychology, Vol.102, No.1, (January 1974), pp.44-49; Crawford, M.T. & McCrea, S.M., "When Mutations meet Motivations: Attitude Biases in Counterfactual Thought", Journal of Experimental Social Psychology, Vol.40, No.1, (January 2004), pp.65-74, etc.
  30. Kahneman, D. & Tversky, A., "The Simulation Heuristic", pp.201-208 in Kahneman, D., Slovic, P. & Tversky, A. (eds), Judgement Under Uncertainty: Heuristics and Biases, Cambridge University Press, (Cambridge), 1982; Sherman, S.J. & McConnell, A.R., "Dysfunctional Implications of Counterfactual Thinking: When Alternatives to reality Fail Us", pp.199-231 in Roese, N.J. & Olson, J.M. (eds.), What Might Have Been: The Social Psychology of Counterfactual Thinking, Lawrence Erlbaum Associates, (Mahwah), 1995;Nasco, S.A. & Marsh, K.L., "Gaining Control Through Counterfactual Thinking", Personality and Social Psychology Bulletin, Vol.25, No.5, (May 1999), pp.556-568; McCloy, R. & Byrne, R.M.J., "Counterfactual Thinking About Controllable Events", Memory and Cognition, Vol.28, No.6, (September 2000), pp.1071-1078; Byrne, R.M.J., "Mental Models and Counterfactual Thoughts About What Might Have Been", Trends in Cognitive Sciences, Vol.6, No.10, (October 2002), pp.426-431; Thompson, V.A. & Byrne, R.M.J., "Reasoning Counterfactually: Making Inferences About Things That Didn't Happen", Journal of Experimental Psychology: Learning, Memory, and Cognition, Vol.28, No.6, (November 2002), pp.1154-1170, etc.
  31. Greenberg, M. (ed.), The Way It Wasn’t: Great Science Fiction Stories of Alternate History, Citadel Twilight, (New York), 1996; Dozois, G. & Schmidt, W. (eds.), Roads Not Taken: Tales of Alternative History, The Ballantine Publishing Group, (New York), 1998; Sylvan, D. & Majeski, S., "A Methodology for the Study of Historical Counterfactuals", International Studies Quarterly, Vol.42, No.1, (March 1998), pp.79-108; Ferguson, N., (ed.), Virtual History: Alternatives and Counterfactuals, Basic Books, (New York), 1999; Cowley, R. (ed.), What If?: The World’s Foremost Military Historians Imagine What Might have Been, Berkley Books, (New York), 2000; Cowley, R. (ed.), What If? 2: Eminent Historians Imagine What Might have Been, G.P. Putnam’s Sons, (New York), 2001, etc.
  32. Fearon, J.D., "Counterfactuals and Hypothesis Testing in Political Science", World Politics, Vol.43, No.2, (January 1991), pp.169-195; Tetlock, P.E. & Belkin, A. (eds.), Counterfactual Thought Experiments in World Politics, Princeton University Press, (Princeton), 1996; Lebow, R.N., "What’s so Different about a Counterfactual?", World Politics, Vol.52, No.4, (July 2000), pp.550-585; Chwieroth, J.M., "Counterfactuals and the Study of the American Presidency", Presidential Studies Quarterly, Vol.32, No.2, (June 2002), pp.293-327, etc.
  33. Cowan, R. & Foray, R., "Evolutionary Economics and the Counterfactual Threat: On the Nature and Role of Counterfactual History as an Empirical Tool in Economics", Journal of Evolutionary Economics, Vol.12, No.5, (December 2002), pp.539-562, etc.
  34. Roese, N.J. & Olson, J.M. (eds.), What Might Have Been: The Social Psychology of Counterfactual Thinking, Lawrence Erlbaum Associates, (Mahwah), 1995; Sanna, L.J., "Defensive Pessimism, Optimism, and Simulating Alternatives: Some Ups and Downs of Prefactual and Counterfactual Thinking", Journal of Personality and Social Psychology, Vol.71, No.5, (November 1996), pp1020-1036; Roese, N.J., "Counterfactual Thinking", Psychological Bulletin, Vol.121, No.1, (January 1997), pp.133-148; Sanna, L.J., "Defensive Pessimism and Optimism: The Bitter-Sweet Influence of Mood on Performance and Prefactual and Counterfactual Thinking", Cognition and Emotion, Vol.12, No.5, (September 1998), pp.635-665; Sanna, L.J. & Turley-Ames, K.J., "Counterfactual Intensity", European Journal of Social Psychology, Vol.30, No.2, (March/April 2000), pp.273-296; Sanna, L.J., Parks, C.D., Meier, S., Chang, E.C., Kassin, B.R., Lechter, J.L., Turley-Ames, K.J. & Miyake, T.M., "A Game of Inches: Spontaneous Use of Counterfactuals by Broadcasters During Major League Baseball Playoffs", Journal of Applied Social Psychology, Vol.33, No.3, (March 2003), pp.455-475, etc.
  35. Strassfeld, R.N., "If...: Counterfactuals in the Law", George Washington Law Review, Volume 60, No.2, (January 1992), pp.339-416; Spellman, B.A. & Kincannon, A., "The Relation between Counterfactual (“but for”) and Causal reasoning: Experimental Findings and Implications for Juror’s Decisions", Law and Contemporary Problems, Vol.64, No.4, (Autumn 2001), pp.241-264; Prentice, R.A. & Koehler, J.J., "A Normality Bias in Legal Decision Making", Cornell Law Review, Vol.88, No.3, (March 2003), pp.583-650, etc.
  36. Creyer, E.H. & Gürhan, Z., "Who's to Blame? Counterfactual Reasoning and the Assignment of Blame", Psychology and Marketing, Vol.14, No.3, (May 1997), pp.209-307; Zeelenberg, M., van Dijk, W.W., van der Plight, J., Manstead, A.S.R., van Empelen, P., & Reinderman, D., "Emotional Reactions to the Outcomes of Decisions: The Role of Counterfactual Thought in the Experience of Regret and Disappointment", Organizational Behavior and Human Decision Processes, Vol.75, No.2, (August 1998), pp.117-141; Naquin, C.E. & Tynan, R.O., "The Team Halo Effect: Why Teams Are Not Blamed for Their Failures", Journal of Applied Psychology, Vol.88, No.2, (April 2003), pp.332-340; Naquin, C.E., "The Agony of Opportunity in Negotiation: Number of Negotiable Issues, Counterfactual Thinking, and Feelings of Satisfaction", Organizational Behavior and Human Decision Processes, Vol.91, No.1, (May 2003), pp.97-107, etc.
  37. Hetts, J.J., Boninger, D.S., Armor, D.A., Gleicher, F. & Nathanson, A., "The Influence of Anticipated Counterfactual Regret on Behavior", Psychology & Marketing, Vol.17, No.4, (April 2000), pp.345-368; Landman, J. & Petty, R., "“It Could Have Been You”: How States Exploit Counterfactual Thought to Market Lotteries", Psychology & Marketing, Vol.17, No.4, (April 2000), pp.299-321; McGill, A.L., "Counterfactual Reasoning in Causal Judgements: Implications for Marketing", Psychology & Marketing, Vol.17, No.4, (April 2000), pp.323-343; Roese, N.J., "Counterfactual Thinking and Marketing: Introduction to the Special Issue", Psychology & Marketing', Vol.17, No.4, (April 2000), pp.277-280; Walchli, S.B. & Landman, J., "Effects of Counterfactual Thought on Postpurchase Consumer Affect", Psychology & Marketing, Vol.20, No.1, (January 2003), pp.23-46, etc.
  38. Randerson, J., "Fast action would have saved millions", New Scientist, Vol.176, No.2372, (7 December 2002), p.19; Haydon, D.T., Chase-Topping, M., Shaw, D.J., Matthews, L., Friar, J.K., Wilesmith, J. & Woolhouse, M.E.J., "The Construction and Analysis of Epidemic Trees With Reference to the 2001 UK Foot-and-Mouth Outbreak", Proceedings of the Royal Society of London Series B: Biological Sciences, Vol.270, No.1511, (22 January 2003), pp.121-127, etc.
  39. Taken from Yeates, 2004, p.144.
  40. Goodman, N., "The Problem of Counterfactual Conditionals", The Journal of Philosophy, Vol.44, No.5, (27 February 1947), pp.113-128.
  41. Goodman's original concept has been subsequently developed and expanded by (a) Daniel Cohen (Cohen, D., "Semifactuals, Even-Ifs, and Sufficiency", International Logic Review, Vol.16, (1985), pp.102-111), (b) Stephen Barker (Barker, S., "Even, Still and Counterfactuals", Linguistics and Philosophy, Vol.14, No.1, (February 1991), pp.1-38; Barker, S., "Counterfactuals, Probabilistic Counterfactuals and Causation", Mind, Vol.108, No.431, (July 1999), pp.427-469), and (c) Rachel McCloy and Ruth Byrne (McCloy, R. & Byrne, R.M.J., "Semifactual 'Even If' Thinking", Thinking and Reasoning, Vol.8, No.1, (February 2002), pp.41-67).
  42. Taken from Yeates, 2004, p.145.
  43. Sarewitz, D. & Pielke, R., "Prediction in Science and Policy", Technology in Society, Vol.21, No.2, (April 1999), pp.121-133.
  44. Nowcasting (obviously based on forecasting) is also known as very-short-term forecasting; thus, also indicating a very-short-term, mid-range, and long-range forecasting continuum.
  45. Browning, K.A. (ed.), Nowcasting, Academic Press, (London), 1982.
  46. Murphy, and Brown — Murphy, A.H. & Brown, B.G., "Similarity and Analogical Reasoning: A Synthesis", pp.3-15 in Browning, K.A. (ed.), Nowcasting, Academic Press, (London), 1982 — describe a large range of specific applications for meteorological nowcasting over wide range of user demands:
    (1) Agriculture: (a) wind and precipitation forecasts for effective seeding and spraying from aircraft; (b) precipitation forecasts to minimize damage to seedlings; (c) minimum temperature, dewpoint, cloud cover, and wind speed forecasts to protect crops from frost; (d) maximum temperature forecasts to reduce adverse effects of high temperatures on crops and livestock; (e) humidity and cloud cover forecasts to prevent fungal disease crop losses ; (f) hail forecasts to minimize damage to livestock and greenhouses; (g) precipitation, temperature, and dewpoint forecasts to avoid during- and after-harvest losses due to crops rotting in the field; (h) precipitation forecasts to minimize losses in drying raisins; and (i) humidity forecasts to reduce costs and losses resulting from poor conditions for drying tobacco.
    (2) Construction: (a) precipitation and wind speed forecasts to avoid damage to finished work (e.g. concrete) and minimize costs of protecting exposed surfaces, structures, and work sites; and (b) precipitation, wind speed, and high/low temperature forecasts to schedule work in an efficient manner.
    (3) Energy: (a) temperature, humidity, wind, cloud, etc. forecasts to optimize procedures related to generation and distribution of electricity and gas; (b) forecasts of thunderstorms, strong winds, low temperatures, and freezing precipitation minimize damage to lines and equipment and to schedule repairs.
    (4) Transportation: (a) ceiling height and visibility, winds and turbulence, and surface ice and snow forecasts minimize risk, maximize efficiency in pre-flight and in-flight decisions and other adjustments to weather-related fluctuations in traffic; (b) forecasts of wind speed and direction, as well as severe weather and icing conditions along flight paths facilitate optimal airline route planning; (c) forecasts of snowfall, precipitation, and other storm-related events allow truckers, motorists, and public transportation systems to avoid damage to weather-sensitive goods, select optimum routes, prevent accidents, minimize delays, and maximize revenues under conditions of adverse weather.
    (5) Public Safety & General Public: (a) rain, snow, wind, and temperature forecasts assist the general public in planning activities such as commuting, recreation, and shopping; (b) forecasts of temperature/humidity extremes (or significant changes) alert hospitals, clinics, and the public to weather conditions that may seriously aggravate certain health-related illnesses; (c) forecasts related to potentially dangerous or damaging natural events (e.g., tornados, severe thunderstorms, severe winds, storm surges, avalanches, precipitation, floods) minimize loss of life and property damage; and (d) forecasts of snowstorms, surface icing, visibility, and other events (e.g. floods) enable highway maintenance and traffic control organizations to take appropriate actions to reduce risks of traffic accidents and protect roads from damage.
  47. Taken from Yeates, 2004, p.145.
  48. Chen, D., Cane, M.A., Kaplan, A., Zebiak, S.E. & Huang, D., "Predictability of El Niño Over the Past 148 Years", Nature, Vol.428, No.6984, (15 April 2004), pp.733-736; Anderson, D., "Testing Time for El Niño", Nature, Vol.428, No.6984, (15 April 2004), pp.709, 711.
  49. Not only did their hindcasting demonstrate that the computerized simulation models could predict the onset of El Niño climatic events from changes in the temperature of the ocean's surface temperature that occur up to two years earlier — meaning that there was now, potentially, at least 2 years' lead time — but the results also implied that El Niño events seemed to be the effects of some causal regularity; and, therefore, were not due to simple chance, or to some other “chaotic” event.
  50. Taken from Yeates, 2004, p.146.
  51. p.24, Einhorn, H.J. & Hogarth, R.M., "Prediction, Diagnosis, and Causal Thinking in Forecasting", Journal of Forecasting, (January–March 1982), Vol.1, No.1, pp.23-36.
  52. "…We consider diagnostic inference to be based on causal thinking, although in doing diagnosis one has to mentally reverse the time order in which events were thought to have occurred (hence the term “backward inference”). On the other hand, predictions involve forward inference; i.e., one goes forward in time from present causes to future effects. However, it is important to recognize the dependence of forward inference/prediction on backward inference/diagnosis. In particular, it seems likely that success in predicting the future depends to a considerable degree on making sense of the past. Therefore, people are continually engaged in shifting between forward and backward inference in both making and evaluating forecasts. Indeed, this can be eloquently summarized by Kierkegaard's observation that, 'Life can only be understood backwards; but it must be lived forwards' …"(Einhorn & Hogarth, 1982, p.24).
  53. Taken from Yeates, 2004, p.147.
  54. See Robinson, J.B., "Energy Backcasting: A Proposed Method of Policy Analysis", Energy Policy, Vol.10, No.4 (December 1982), pp.337-345; Robinson, J.B., "Unlearning and Backcasting: Rethinking Some of the Questions We Ask About the Future", Technological Forecasting and Social Change, Vol.33, No.4, (July 1988), pp.325-338; Robinson, J., "Future Subjunctive: Backcasting as Social Learning", Futures, Vol.35, No.8, (October 2003), pp.839-856.
  55. Robinson's backcasting approach is very similar to the anticipatory scenarios of Ducot and Lubben (Ducot, C. & Lubben, G.J., "A Typology for Scenarios", Futures, Vol.11, No.1, (February 1980), pp.51-57), and Bunn and Salo (Bunn, D.W. & Salo, A.A., "Forecasting with scenarios", European Journal of Operational Research, Vol.68, No.3, (13 August 1993), pp.291-303).
  56. p.814, Dreborg, K.H., "Essence of Backcasting", Futures, Vol.28, No.9, (November 1996), pp.813-828.
  57. Jansen, L., "Towards a Sustainable Future, en route with Technology", pp.496-525 in Dutch Committee for Long-Term Environmental Policy (ed.), The Environment: Towards a Sustainable Future (Environment & Policy, Volume 1), Kluwer Academic Publishers, (Dortrecht), 1994.
  58. Plato. Rep. vii, I–III, 514–518B.
  59. Seyyed Hossein Nasr and Oliver Leaman (1996), History of Islamic Philosophy, p. 315, Routledge, ISBN 0-415-13159-6.
  60. While the problem presented in this short story's scenario is not unique, it is extremely unusual. Most thought experiments are intentionally (or, even, sometimes unintentionally) skewed towards the inevitable production of a particular solution to the problem posed; and this happens because of the way that the problem and the scenario are framed in the first place. In the case of The Lady, or the Tiger?, the way that the story unfolds is so "end-neutral" that, at the finish, there is no "correct" solution to the problem. Therefore, all that one can do is to offer one's own innermost thoughts on how the account of human nature that has been presented might unfold ? according to one's own experience of human nature ? which is, obviously, the purpose of the entire exercise. The extent to which the story can provoke such an extremely wide range of (otherwise equipollent) predictions of the participants' subsequent behaviour is one of the reasons the story has been so popular over time.

Further reading

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.