Thaine's theorem

In mathematics, Thaine's theorem is an analogue of Stickelberger's theorem for real abelian fields, introduced by Thaine (1988). Thaine's method has been used to shorten the proof of the Mazur–Wiles theorem (Washington 1997), to prove that some Tate–Shafarevich groups are finite, and in the proof of Mihăilescu's theorem (Schoof 2008).

Formulation

Let and be distinct odd primes with not dividing . Let be the Galois group of over , let be its group of units, let be the subgroup of cyclotomic units, and let be its class group. If annihilates then it annihilates .

References

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.