Tetrazolium chloride

Tetrazolium chloride
Names
IUPAC name
2,3,5-Triphenyl-2H-tetrazolium chloride
Other names
TTC
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.005.520
Properties
C19H15ClN4
Molar mass 334.8 g/mol
Appearance white crystalline powder
Soluble
Solubility in water ~1 mg/ml
Solubility in PBS (pH 7.2) ~1 mg/ml
Solubility in ethanol ~1 mg/ml
Solubility in DMSO ~0.25 mg/ml
log P −2.4
Hazards
GHS pictograms
GHS signal word Danger
H228
P210
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
Lethal dose or concentration (LD, LC):
5.6 mg/kg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Triphenyl tetrazolium chloride, TTC, or simply tetrazolium chloride (with the formula 2,3,5-triphenyl-2H-tetrazolium chloride) is a redox indicator commonly used in biochemical experiments especially to indicate cellular respiration. It is a white crystalline powder, soluble in water, ethanol and acetone but insoluble in ether.[1][2]

TTC assay

In the TTC assay (also known as TTC test or tetrazolium test), TTC is used to differentiate between metabolically active and inactive tissues. The white compound is enzymatically reduced to red TPF (1,3,5-triphenylformazan) in living tissues due to the activity of various dehydrogenases (enzymes important in oxidation of organic compounds and thus cellular metabolism), while it remains in it's unreacted state in areas of necrosis since these enzymes have either denatured or degraded.

TTC has been employed in autopsy pathology to assist post-mortem identification of myocardial infarctions. Healthy viable heart muscle will stain deep red from the cardiac lactate dehydrogenase; while areas of potential infarctions will be more pale.

See also

References

  1. Witty M. (2012). Topographischer Nachweis der Keimfähigkeit der Getreidefrüchte durch Tetrazoliumsalze (Topographic Detection of Germination in Cereal Crops by Tetrazolium Salts) — A Translation of Lakon’s 1942 Paper on Tetrazolium Seed Testing. Seed Technology 34(2):275-282.
  2. Witty M. (2012). The process for 2, 3, 5 - triphenyl – tetrazolium chloride synthesis, an intellectual property seized immediately after world war II. Bulletin for the History of Chemistry 37(2):91-95.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.