Tetrahydrofolic acid

Tetrahydrofolic acid
Skeletal formula of tetrahydrofolic acid
Space-filling model of the tetrahydrofolic acid molecule
Names
IUPAC name
(2S)-2-{[4-({[(6S)-2-amino-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.004.711
KEGG
MeSH 5,6,7,8-tetrahydrofolic+acid
UNII
Properties
C19H23N7O6
Molar mass 445.43 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Tetrahydrofolic acid, or tetrahydrofolate, is a folic acid derivative.

Metabolism

Synthesis pathway of tetrahydrofolic acid (click to enlarge).

Human synthesis

It is produced from dihydrofolic acid by dihydrofolate reductase. This reaction is inhibited by methotrexate.[1]

It is converted into 5,10-methylenetetrahydrofolate by serine hydroxymethyltransferase.

Bacterial synthesis

Many bacteria use dihydropteroate synthetase to produce dihydropteroate, a molecule without function in humans. This makes it a useful target for sulfonamide antibiotics, which compete with the PABA precursor.

Pathway of tetrahydrofolate and antimetabolites

Functions

Tetrahydrofolic acid is a cofactor in many reactions, especially in the synthesis (or anabolism) of amino acids and nucleic acids. It acts as a donor of a group with one carbon atom. It gets this carbon atom by sequestering formaldehyde produced in other processes. A shortage in tetrahydrofolic acid (FH4) can cause megaloblastic anemia.

Methotrexate acts on dihydrofolate reductase, like pyrimethamine or trimethoprim, as an inhibitor and thus reduces the amount of tetrahydrofolate made. This may result in megaloblastic anemia.

Tetrahydrofolic acid is involved in the conversion of formiminoglutamic acid to glutamic acid; this may reduce the amount of histidine available for decarboxylation and protein synthesis, and hence the urinary histamine and formiminoglutamic acid may be decreased.[2]

References

  1. Rajagopalan, P. T. Ravi; Zhang, Zhiquan; McCourt, Lynn; Dwyer, Mary; Benkovic, Stephen J.; Hammes, Gordon G. (2002-10-15). "Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics". Proceedings of the National Academy of Sciences. 99 (21): 13481–13486. ISSN 0027-8424. PMC 129699Freely accessible. PMID 12359872. doi:10.1073/pnas.172501499.
  2. Dawson W, Maudsley DV, West GB (December 1965). "Histamine formation in guinea-pigs". J. Physiol. (Lond.). 181 (4): 801–9. PMC 1357684Freely accessible. PMID 5881255. doi:10.1113/jphysiol.1965.sp007798.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.