Tetrafluoroberyllate

Tetrafluoroberyllate or orthofluoroberyllate BeF42− is an anion containing beryllium and fluorine. The ion has a tetrahedral shape, the same size and outer electron structure as sulfate. Therefore, many compounds that contain sulfate, have equivalents with tetrafluoroberyllate. Examples of these are the Langbeinites, and Tutton's salts.

Properties

The Be–F distance is 1.45-1.53Å. This bond is sp3 and has a longer length than the sp bond in BeF2 gas.[1] In trifluoroberyllates, there are actually BeF4 tetrahedra arranged in a triangle, so that three fluorine atoms are shared on two tetrahedra each, resulting in a formula of Be3F9.[2]

In the tetrafluoroberyllates the tetrahedra can rotate to various degrees. At room temperatures they are hindered from moving. But as temperature increases they can rotate around the three-fold access, with a potential barrier of 12.5 kcal/mol. At higher temperatures the movement can become isotropic with a potential barrier of 14.5 kcal/mol.[1]

Similar formula compounds have magnesium or zinc in a similar position. e.g. K2MgF4 or (NH4)2ZnF4 but these are not as stable.[2]

Tetrafluoroberyllate has a biological effect by inhibiting F-ATPase ATP producing enzymes in mitochondria and bacteria. It does this by attempting to react with adenosine diphosphate because it resembles phosphate. However once it does this it remains stuck in the F1 part of the enzyme and inhibits it from further function.[3]

Simple salts

name formula molecular weight CAS crystal form density melting point solubility g/100ml
lithium tetrafluoroberyllate Li2BeF4 98.89 2.167[4] 472 °C[5]
lithium tetrafluoroberyllate Li2BeF4.H2O 116.89 1.944[4]
sodium tetrafluoroberyllate Na2BeF4 130.985333 13871-27-7 Orthorhombic[6] 2.47 575 °C slight 1.33 @0° 1.44 @20° 2.73 @90°[7]
potassium tetrafluoroberyllate K2BeF4 163.20 7787-50-0 orthorhombic a = 5.691Å, b = 7.278Å, c = 9.896Å[8] as for strontium orthosilicate[2] 2.64[8]
potassium tetrafluoroberyllate dihydrate K2BeF4.2(H2O) 199.233
ammonium tetrafluoroberyllate (NH4)2BeF4 121.0827 14874-86-3 orthorhombic a = 0.591 nm, b = 0.764 nm, c = 1.043 nm 1.71 d 280 °C[9]
rubidium tetrafluoroberyllate Rb2BeF4 255.941 orthorhombic a = 5.87Å, b = 7.649Å, c = 10.184Å[8] 3.72[8]
caesium tetrafluoroberyllate Cs2BeF4 350.8167 orthorhomic a = 8.03Å, b = 10.81Å, c = 0.622Å 4.32
thallium tetrafluoroberyllate Tl2BeF4 493.7724 orthorhombic a=7.7238 b=5.9022 c=10.4499[10] 6.884[10]
silver tetrafluoroberyllate Ag2BeF4 300.7422
magnesium tetrafluoroberyllate MgBeF4 109.3108
calcium tetrafluoroberyllate CaBeF4 125.08 2.959[11]
strontium tetrafluoroberyllate SrBeF4 172.6 orthorhombic a = 0.5291 nm, b = 0.6787 nm, c = 0.8307 nm 3.84 ins
barium tetrafluoroberyllate BaBeF4 222.333 4.17[4] ins
radium tetrafluoroberyllate RaBeF4[12] 311.005795 ins
heptaqua ferrous tetrafluoroberyllate FeBe4.7H2O[11] 1.894
heptaqua nickel tetrafluoroberyllate NiBe4.7H2O[11]
hexaqua nickel tetrafluoroberyllate NiBe4.6H2O[11] 1.941
heptaqua cobalt tetrafluoroberyllate CoBe4.7H2O[11] 1.867
hexaqua cobalt tetrafluoroberyllate CoBe4.6H2O[11] 1.891
pentaqua copper tetrafluoroberyllate CuBe4.5H2O[11]
heptaqua zinc tetrafluoroberyllate ZnBe4.7H2O[11]
cadmium tetrafluoroberyllate CdBe4.8/3H2O[11]
lead tetrafluoroberyllate PbBeF4 292.2 6.135[4]
hydrazinium tetrafluoroberyllate N2H6BeF4 119.0668 a = 0.558 nm, b = 0.7337 nm, c = 0.9928 nm, α = 90 °, β = 98.22 °, γ = 90 °[8]
triglycine tetrafluoroberyllate (NH2CH2COOH)3.H2BeF4 312.221 2396-72-7 monoclinic[13][14]
ethylene diamine fluoroberyllate (NH2CH2CH2NH2).H2BeF4[15] d 330°
propylenediamine tetrafluoroberyllate (NH2CH2CH2CH2NH2).H2BeF4[16]
propylenediamine tetrafluoroberyllate (NH2CH.(CH3)CH2NH2).H2BeF4[15]
benzidine fluoroberyllate (NH2C6H4C6H4NH2).H2BeF4[15] ins
tetramethyl ammonium tetrafluoroberyllate [N(CH3)4]2BeF4[4]
tetramine silver tetrafluoroberyllate [Ag(NH3)2]2BeF4[17]
[Cu(NH3)2]2BeF4[17]
[Cu(NH3)4]2BeF4.H2O[17]
[Zn(NH3)4]2BeF4[17]
[Cd(NH3)4]2BeF4[17]
[Ni(NH3)6]2BeF4[17]
[Ni(NH3)4]2BeF4.2H2O[17]
[Ni(NH3)2]2BeF4[17]
[Co(NH3)6]2BeF4.3H2O[17]

Sodium tetrafluoroberyllate has several crystalline forms. Below 220 °C it takes the same form as orthorhombic olivine, and this is called γ phase. Between 220 and 320 it is in the α' form. When temperature is raised above 320 it changes to the hexagonal α form. When cooled the α' form changes to β form at 110° and this can be cooled to 70° before changing back to the γ form.[18] It can be formed by melting sodium fluoride and beryllium fluoride.[18] The gas above molten sodium tetrafluoroberyllate contains BeF2 and NaF gas.[1]

Lithium tetrafluoroberyllate takes on the same crystal form as the mineral phenacite. As a liquid it is proposed for the molten salt reactor, in which it is called FLiBe. The liquid salt has a high specific heat, similar to that of water. The molten salt has a very similar density to the solid. The solid has continuous void channels through it, which reduces its density.[5] Li2BeF4 can be crystallised from aqueous solution using (NH4)2BeF4 and LiCl.[19]

Potassium tetrafluoroberyllate has the same structure as anhydrous potassium sulfate, as does rubidium and caesium tetrafluoroberyllate. Potassium tetrafluoroberyllate can make solid solutions with potassium sulfate.[1] It can be used as a starting point to make the non-linear optic crystal KBe2BO3F2 which has the highest power handling capacity and shortest UV performance of any borate.[20] It is quite soluble in water, so beryllium can be extracted from soil this in this form.[21]

Ammonium tetrafluoroberyllate decomposes on heating by losing NH4F vapour, progressively forming NH4BeF3, then NH4Be2F5 and finally BeF2.[1]

Thallium tetrafluoroberyllate can be made by dissolving beryllium fluoride and thallium carbonate together in hydrofluoric acid and then evaporating the solution.[10]

Radium tetrafluoroberyllate is used as a standard neutron source. The alpha particles from the radium cause neutrons to be emitted from the beryllium. It is precipitated from a radium chloride solution mixed with potassium tetrafluoroberyllate.[2]

Magnesium tetrafluoroberyllate can be precipitated from a hot saturated solution of ammonium tetrafluoroberyllate and a magnesium salt.[1] However, if the temperature reaches boiling point MgF2 is precipitated instead.[22]

Calcium tetrafluoroberyllate resembles zircon in the way it melts and crystallises.[1]

Strontium tetrafluoroberyllate can be made in several forms. The Ύ is produced by cooling a melt of SrF2 and Be2 and the β from is made by precipitating from a water solution. When melted and heated to 850-1145° Be2 gas evaporates leaving behind molten SrF2.[1]

The barium tetrafluoroberyllate is very insoluble and can be used for gravimetric analysis of beryllium.[1]

H2BeF4 is an acid that can be produced from Ag2BeF4 and HCl. It only exists dissolved in water.[1]

Triglycine tetrafluoroberyllate (TGFB) is ferroelectric with a transition point of 70 °C.[13] The crystals can be formed by dissolving BeF2 in water, adding HF and then gylcine. When the solution is cooled triglycine tetrafluoroberyllate forms. Cs2BeF4 and Tl2BeF4 in the solution reduce growth on the 001 direction so that tabular shaped crystals of TGFB form. The thallium compound can cut growth on the 001 axis by 99%.[23]

Double salts

The Tuttons salt (NH4)2Mn(BeF4)2.6(H2O) is made from a solution of NH4BeF3 mixed with NH4MnF3.[1] The equivalent of alums are hard to make because the trivalent ion will often form a complex with fluoride in preference to the beryllium fluoride. However the violet coloured acid and rubidium chrome alum exist at chilly temperatures for a few hours.[24]

Tutton's salts containing magnesium with fluoroberyllate are difficult to produce, as the solutions tend to precipitate insoluble MgF2.[25]

name formula molecular weight CAS crystal form density melting point solubility g/100ml
potassium lithium tetrafluoroberyllate KLiBeF4 131.05 P63 a=8.781 b=5.070 c=8.566[26]
rubidium lithium tetrafluoroberyllate RbLiBeF4 177.41 P6322 a=8.980 b=5.185 c=8.751[26]
caesium lithium tetrafluoroberyllate CsLiBeF4 224.852 P21/n a=9.328 b=5.356 c=8.736 γ=89°49′[26]
acid chromium fluoroberyllate tetracosihydrate H2Cr2(BeF4)4.24H2O[24] 878.40
ammonium chromium fluoroberyllate tetracosihydrate (NH4)2Cr2(BeF4)4.24H2O[24] 912.46
rubidium chromium fluoroberyllate tetracosihydrate Rb2Cr2(BeF4)4.24H2O[24] 1047.32
manganese ammonium fluoroberyllate hydrate (NH4)2Mn(BeF4)2.6H2O[25] 369.118 1.758[27]
Rb2Fe(BeF4)2.6H2O[25] 504.884
ferrous ammonium fluoroberyllate hydrate (NH4)2Fe(BeF4)2.6H2O[25] 370.025[27]
nickel potassium fluoroberyllate hydrate K2Ni(BeF4)2.6H2O[25] 414.913[27]
nickel rubidium fluoroberyllate hydrate Rb2Ni(BeF4)2.6H2O[25] 507.732
Cs2Ni(BeF4)2.6H2O[25] 602.608
nickel ammonium fluoroberyllate hydrate (NH4)2Ni(BeF4)2.6H2O[25] 372.874 P21/a a=9.201 b=12.482 c=6.142 β=106.57 V=676.0 Z=2[28] 1.843[27]
cobalt potassium fluoroberyllate hydrate K2Co(BeF4)2.6H2O[25] 415.233[27]
cobalt rubidium fluoroberyllate hydrate Rb2Co(BeF4)2.6H2O[25] 507.972
cobalt ammonium fluoroberyllate hydrate (NH4)2Co(BeF4)2.6H2O[25] 372.874 1.821[27]
copper rubidium fluoroberyllate hydrate Rb2Cu(BeF4)2.6H2O[25] 512.585
copper ammonium fluoroberyllate hydrate (NH4)2Cu(BeF4)2.6H2O[25] 377.726 1.858[27]
zinc rubidium fluoroberyllate hydrate Rb2Zn(BeF4)2.6H2O[25] 514.42
zinc ammonium fluoroberyllate hydrate (NH4)2Zn(BeF4)2.6H2O[25] 379.56 1.859[27]
cadmium rubidium fluoroberyllate hydrate Rb2Cd(BeF4)2.6H2O[25] 561.45
cadmium ammonium fluoroberyllate hydrate (NH4)2Cd(BeF4)2.6H2O[25] 426.591

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Emeléus, Harry Julius; Sharpe, A. G. (1972-12-06). ADVANCES IN INORGANIC CHEMISTRY AND RADIOCHEMISTRY. Academic Press. pp. 271–275. ISBN 9780080578637. Retrieved 13 July 2013.
  2. 1 2 3 4 Simons, J.H. (1954-01-01). Fluorine Chemistry. Elsevier. p. 5. ISBN 9780323145435. Retrieved 13 July 2013.
  3. Lunardi, Joel; Dupuis, Alain; Garin, Jerome; Issartel, Jean-Paul; Laurent, Michel; Peinnequin, Andre; Vignais, Pierre (1992). Fluoroaluminum and Fluoroberyllium Complexes as Probes of the Catalytic Sites of Mitochondrial F1-ATPases. Adenine Nucleotides in Cellular Energy Transfer and Signal Transduction. UNESCO. pp. 59–69.
  4. 1 2 3 4 5 Rây, Nirmalendu Nath (1931). "Fluoberyllate und ihre Analogie mit Sulfaten. I". Zeitschrift für anorganische und allgemeine Chemie. 201 (1): 289–300. ISSN 0863-1786. doi:10.1002/zaac.19312010126.
  5. 1 2 Douglas, Thomas B.; William H. Payne (May 20, 1969). "Measured Solid Enthalpy and Derived Thermodynamic Properties of and Liquid Lithium Tetrafluoroberyllate, Li2BeF4 from 273 to 900 K". Journal of Research of the National Bureau of Standards Section A. Washington, D.C.: Institute for Basic Standards, National Bureau of Standards,. 73A (5).
  6. Furuhashi, Koushi; Junko Habasaki; Isao Okada (1986). "A molecular dynamics study of the structures and dynamic properties of molten NaBeF3and Na2BeF4". Molecular Physics. 59 (6): 1329–1344. Bibcode:1986MolPh..59.1329F. ISSN 0026-8976. doi:10.1080/00268978600102761.
  7. Perry, Dale L. (2011-05-19). Handbook of Inorganic Compounds, Second Edition. Taylor & Francis. p. 394. ISBN 9781439814611. Retrieved 13 July 2013.
  8. 1 2 3 4 5 Villars, P. "AtomWork Materials Database". Nationional Institute of Materials Science. Retrieved 17 July 2013.
  9. Andreev, A. A.; A. N. D’yachenko, R. I. Kraidenko (2011). "Fluorination of beryllium concentrates with ammonium fluorides". Russian Journal of Applied Chemistry. 81 (2): 178–182. ISSN 1070-4272. doi:10.1134/S1070427208020043.
  10. 1 2 3 da Silva, Iván; Cristina González-Silgo; Javier González-Platas; Juan Rodríguez-Carvajal; María Luisa Martínez-Sarrión; Lourdes Mestres (2005). "Powder neutron diffraction of Tl2BeF4at six temperatures from room temperature to 1.5 K". Acta Crystallographica Section C. 61 (12): i113–i116. ISSN 0108-2701. doi:10.1107/S010827010503249X.
  11. 1 2 3 4 5 6 7 8 9 Rây, Nirmalendu Nath (1932). "Fluoberyllate und ihre Analogie mit den Sulfaten. II. Fluoberyllate einiger zweiwertiger Metalle". Zeitschrift für anorganische und allgemeine Chemie (in German). 205 (3): 257–267. ISSN 0863-1786. doi:10.1002/zaac.19322050307.
  12. Sastri, Malladi Narasimha (1958). Radiochemical measurements on neutron sources (PDF) (Thesis). Durham University. pp. 18–20.
  13. 1 2 Zarembovskaya, T. A.; V. M. Varikash; P. A. Pupkevich (1972). "Thermal expansion of triglycine fluoroberyllate crystals near the ferroelectric transition point". Soviet Physics Journal. 15 (6): 920–922. Bibcode:1972SvPhJ..15..920Z. ISSN 0038-5697. doi:10.1007/BF00912245.
  14. Ghazaryan, V.V.; Fleck, M.; Petrosyan, A.M. (September 2014). "New chemical analogs of triglycine sulfate". Journal of Crystal Growth. 401: 857–862. doi:10.1016/j.jcrysgro.2013.11.054.
  15. 1 2 3 Ghosh, Amiya Kanti (1959). "Fluoberyllates of Organic Bases. I". Zeitschrift für anorganische und allgemeine Chemie. 300 (1–2): 98–101. ISSN 0044-2313. doi:10.1002/zaac.19593000110.
  16. Kanti Ghosh, Amiya; Nirmalendu Nath Ráy (1959). "Fluoberyllates and their Analogy with Sulphates. XII. Complex Compounds of Zinc and Cadmium Fluoberyllate with Organic Bases". Zeitschrift für anorganische und allgemeine Chemie. 300 (1–2): 109–112. ISSN 0044-2313. doi:10.1002/zaac.19593000112.
  17. 1 2 3 4 5 6 7 8 9 Rây, Nirmalendunath (1939). "Fluoberyllate und ihre Analogie mit Sulfaten. VI. Die Fluoberyllate von Metallamminkomplexen". Zeitschrift für anorganische und allgemeine Chemie. 241 (2–3): 165–171. ISSN 0863-1786. doi:10.1002/zaac.19392410203.
  18. 1 2 Holm, J. L.; K. Lønvik (1982). "Studies of the polymorphic transformations of dicalcium silicate (Ca2SiO4) and sodium tetrafluoroberyllate (Na2BeF4) by Thermosonimetry and differential scanning calorimetry". Journal of Thermal Analysis. 25 (1): 109–115. ISSN 0368-4466. doi:10.1007/BF01913059.
  19. Simons, J.H. (1964-01-01). Fluorine Chemistry. Elsevier. pp. 20–22. ISBN 9780323147248. Retrieved 13 July 2013.
  20. Karas, George V. (2005). New Developments in Crystal Growth Research. Nova Publishers. pp. 24–26. ISBN 9781594545399. Retrieved 14 July 2013.
  21. Stone, John (May 2004). "Extraction ofBeryllium-10 from Soil by Fusion" (PDF). Retrieved 14 July 2013.
  22. Walsh, Kenneth A. (2009-01-01). Beryllium Chemistry and Processing. ASM International. p. 100. ISBN 9780871707215. Retrieved 14 July 2013.
  23. Wieder, H.H.; C.R. Parkerson (1966). "Some ferroelectric and dielectric properties of triglycine fluoberyllate". Journal of Physics and Chemistry of Solids. 27 (2): 247–252. Bibcode:1966JPCS...27..247W. ISSN 0022-3697. doi:10.1016/0022-3697(66)90029-1.
  24. 1 2 3 4 Ghosh, Amiya Kanti (1959). "Complex Chromic Fluoberyllates. I". Zeitschrift für anorganische und allgemeine Chemie. 300 (1–2): 102–108. ISSN 0044-2313. doi:10.1002/zaac.19593000111.
  25. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Rây, Nirmalendunath (1936). "Fluoberyllate und ihre Analogie mit Sulfaten. IV. Doppelsalze mit Rubidium- und Cäsiumfluoberyllaten". Zeitschrift für anorganische und allgemeine Chemie (in German). 227 (1): 32–36. ISSN 0863-1786. doi:10.1002/zaac.19362270105.
  26. 1 2 3 Hahn, Th.; G. Lohre; S. J. Chung (1969). "A new tetrahedral framework structure in sulfates and fluoberyllates". Die Naturwissenschaften. 56 (9): 459–459. Bibcode:1969NW.....56Q.459H. ISSN 0028-1042. doi:10.1007/bf00601063.
  27. 1 2 3 4 5 6 7 8 Nath Rây, Nirmalendu (1932). "Fluoberyllate und ihre Analogie mit Sulfaten. III. Doppelsalze der Fluoberyllate". Zeitschrift für anorganische und allgemeine Chemie (in German). 206 (2): 209–216. ISSN 0863-1786. doi:10.1002/zaac.19322060209.
  28. Montgomery, H. (15 September 1980). "Diammonium nickel bis(tetrafluoroberyllate)hexahydrate". Acta Crystallographica Section B. 36 (9): 2121–2123. doi:10.1107/S0567740880008060.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.