Tetranitromethane

Tetranitromethane[1]
Names
IUPAC name
Tetranitromethane
Other names
TNM
Tetan
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.359
KEGG
RTECS number PB4025000
UN number 1510
Properties
CN4O8
Molar mass 196.04 g/mol
Appearance Colorless to pale-yellow liquid or solid
Odor Pungent
Density 1.623 g/cm3
Melting point 13.8 °C (56.8 °F; 286.9 K)
Boiling point 126 °C (259 °F; 399 K)
insol
Vapor pressure 8 mmHg (20°C)[2]
-43.02·10−6 cm3/mol
Hazards
Main hazards Oxidant, can form explosive mixtures
Safety data sheet ICSC 1468
R-phrases (outdated) R8 R23/24/25 R36/38 R45
S-phrases (outdated) S17 S45
NFPA 704
Lethal dose or concentration (LD, LC):
18 ppm (rat, 4 hr)
100 ppm (cat, 20 min)
54 ppm (mouse, 4 hr)[3]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 1 ppm (8 mg/m3)[2]
REL (Recommended)
TWA 1 ppm (8 mg/m3)[2]
IDLH (Immediate danger)
4 ppm[2]
Related compounds
Related compounds
Hexanitroethane
Octanitropentane
Trinitromethane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Tetranitromethane or TNM is an organic oxidizer with chemical formula C(NO2)4. Its chemical structure consists of four nitro groups attached to one carbon atom. In 1857 it was first synthesised by the reaction of sodium cyanoacetamide with nitric acid.[4]

Uses

It has been investigated for use as an oxidizer in bipropellant rockets; however, its high freezing temperature makes it unsuitable. Highly purified tetranitromethane cannot be made to explode, but its sensitivity is increased dramatically by oxidizable contaminants, such as anti-freezing additives. This makes it effectively unusable as a propellant.[5] In the laboratory it is used as a reagent for the detection of double bonds in organic compounds and as a nitrating reagent. It has also found use as an additive to diesel fuel to increase the cetane number.[6]

Preparation

TNM is a pale yellow liquid that can be prepared in the laboratory by the nitration of acetic anhydride with anhydrous nitric acid (Chattaway's method).[7] This method was attempted on an industrial scale in the 1950s by Nitroform Products Company in Newark, USA, but the entire plant was destroyed by an explosion in 1953.[8]

The first industrial scale production was started in Germany during World War II in an effort to improve the cetane number of diesel fuel. This process improved the original method, which started with acetic acid and nitric acid.[9] Without regard to yield or cost, approximately 10 tons of TNM were produced in a few weeks. However, this production process has not been used again industrially after the end of the war, because of high associated costs.[10]

For commercial use a cheaper method starting from acetylene has been used.[11] First, nitric acid containing mercuric nitrate is reduced by acetylene, resulting in nitroform (trinitromethane) and a mixture of carbon dioxide and nitrogen oxide as waste gas. The nitrogen oxides are valuable and normally recovered as nitric acid in an absorption tower. The resulting nitroform is converted to TNM by adding nitric and sulfuric acid at higher temperatures. With this method a yield of 90% (based on nitric acid) before purification can be reached.[12]

Safety

The ability of TNM to detonate is greatly affected by the presence of impurities, even in small quantities. TNM forms extremely powerful explosive mixtures when fuels are added in stoichiometric proportions. Many of these mixtures show sensitivity to impact even higher than that of nitroglycerine.[13]

TNM reacts with moisture at elevated pH to produce trinitromethane (nitroform) which reacts easily with metals to form highly unstable and explosive salts.

Tetranitromethane is highly toxic. Absorption of as little as 2.5 mg/kg can cause methemoglobinemia, lung edema, and damage to liver, kidney, and central nervous system. It is reasonably expected to be a human carcinogen.[14]

References

  1. Merck Index, 11th Edition, 9164.
  2. 1 2 3 4 "NIOSH Pocket Guide to Chemical Hazards #0605". National Institute for Occupational Safety and Health (NIOSH).
  3. "Tetranitromethane". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
  4. L. N. Shishkov (1857). "Sur la constitution de l'acetic fulminique et un nouvelle serie de corps derives de l'acide acetique". Annales de chimie et de physique. 49 (11): 310.
  5. J. G. Tschinkel (1956). "Tetranitromethane as Oxidizer in Rocket Propellants". Industrial and Engineering Chemistry. 48 (4): 732. doi:10.1021/ie50556a022.
  6. K. V. Altukhov, V. V. Perekalin (1976). "The Chemistry of Tetranitromethane". Russian Chemical Reviews. 45 (11): 1052–1066. doi:10.1070/RC1976v045n11ABEH002759.
  7. Liang, P. (1941). "Tetranitromethane" (PDF). Org. Synth. 21: 105.; Coll. Vol., 3, p. 803
  8. Mahoney vs Nitroform Co., 114 A.2d 863 (NJ Appellate Div 1955).
  9. F. D. Chattaway (1910). "A simple method of preparing tetranitromethane". Journal of the Chemical Society. 97: 2099–2102. doi:10.1039/CT9109702099.
  10. K. F. Hager (1949). "Tetranitromethane". Industrial and Engineering Chemistry. 41 (10): 2168–2172. doi:10.1021/ie50478a028.
  11. K. J. P. Orton, P. V. McKie (1920). "The action of nitric acid on unsaturated hydrocarbons. The action of nitric acid on acetylene". Journal of the Chemical Society. 117: 283–297. doi:10.1039/CT9201700283.
  12. Urbanski, Tadeusz (1964). Chemistry and Technology of Explosives. I. Pergamon Press. pp. 589–594. LCCN 83002261.
  13. Urbanski, Tadeusz (1964). Chemistry and Technology of Explosives. I. Pergamon Press. p. 593. LCCN 83002261.
  14. National Toxicology Program (2011). "Tetranitromethane" (pdf). Report On Carcinogens (12th ed.). National Toxicology Program. Retrieved 2012-08-14.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.