Taub–NUT space

The Taub–NUT metric (/tɔːb nʌt/[1] or /tɔːb ɛnjuːˈt/) is an exact solution to Einstein's equations, a cosmological model formulated in the framework of general relativity.

The Taub–NUT space was found by Abraham Haskel Taub (1951), and extended to a larger manifold by E. Newman, L. Tamburino, and T. Unti (1963), whose initials form the "NUT" of "Taub–NUT".

Taub's solution is an empty space solution of Einstein's equations with topology R×S3 and metric

where

and m and l are positive constants.

Taub's metric has coordinate singularities at , and Newman, Tamburino and Unti showed how to extend the metric across these surfaces.

Notes

  1. McGraw-Hill Science & Technology Dictionary: "Taub NUT space"

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.