Dieudonné determinant

In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by Dieudonné (1943).

If K is a division ring, then the Dieudonné determinant is a homomorphism of groups from the group GLn(K) of invertible n by n matrices over K onto the abelianization K×/[K×, K×] of the multiplicative group K× of K.

For example, the Dieudonné determinant for a 2-by-2 matrix is

Properties

Let R be a local ring. There is a determinant map from the matrix ring GL(R) to the abelianised unit group R×ab with the following properties:[1]

Tannaka–Artin problem

Assume that K is finite over its centre F. The reduced norm gives a homomorphism Nn from GLn(K) to F×. We also have a homomorphism from GLn(K) to F× obtained by composing the Dieudonné determinant from GLn(K) to K×/[K×, K×] with the reduced norm N1 from GL1(K) = K× to F× via the abelianization.

The Tannaka–Artin problem is whether these two maps have the same kernel SLn(K). This is true when F is locally compact[2] but false in general.[3]

See also

References

  1. Rosenberg (1994) p.64
  2. Nakayama, Tadasi; Matsushima, Yozô (1943). "Über die multiplikative Gruppe einer p-adischen Divisionsalgebra". Proc. Imp. Acad. Tokyo (in German). 19: 622–628. Zbl 0060.07901. doi:10.3792/pia/1195573246.
  3. Platonov, V.P. (1976). "The Tannaka-Artin problem and reduced K-theory". Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian). 40: 227–261. Zbl 0338.16005.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.