TAF9

TAF9
Identifiers
AliasesTAF9, MGC:5067, STAF31/32, TAF2G, TAFII-31, TAFII-32, TAFII31, TAFII32, TAFIID32, TATA-box binding protein associated factor 9
External IDsMGI: 1888697 HomoloGene: 39986 GeneCards: TAF9
Gene location (Human)
Chr.Chromosome 5 (human)[1]
BandNo data availableStart69,364,743 bp[1]
End69,370,013 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

6880

108143

Ensembl

ENSG00000273841
ENSG00000276463

ENSMUSG00000052293

UniProt

Q16594

Q8VI33

RefSeq (mRNA)

NM_003187
NM_001015892

NM_001015889
NM_027139

RefSeq (protein)

NP_001015892
NP_003178

NP_001015889
NP_081415

Location (UCSC)Chr 5: 69.36 – 69.37 MbChr 5: 100.65 – 100.66 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa, also known as TAF9, is a protein that in humans is encoded by the TAF9 gene.[5][6]

Function

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein complex that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the smaller subunits of TFIID that binds to the basal transcription factor GTF2B as well as to several transcriptional activators such as p53 and VP16. A similar but distinct gene (TAF9B) has been found on the X chromosome and a pseudogene has been identified on chromosome 19. Alternative splicing results in multiple transcript variants encoding different isoforms.[5]

Structure

The 17-amino-acid-long trans-activating domains (TAD) of several transcription factors were reported to bind directly to TAF9: p53, VP16, HSF1, NF-IL6, NFAT1, NF-κB, and ALL1/MLL1.[7] Inside of these 17 amino acids, a unique Nine-amino-acid transactivation domain (9aaTAD) was identified for each reported transcription factor.[8] 9aaTAD is a novel domain common to a large superfamily of eukaryotic transcription factors represented by Gal4, Oaf1, Leu3, Rtg3, Pho4, Gln4, Gcn4 in yeast and by p53, NFAT, NF-κB and VP16 in mammals.[9] TAF9 is supposed to be a universal transactivation cofactor for 9aaTAD transcription factors.[8]

Interactions

TAF9 has been shown to interact with:

References

  1. 1 2 3 ENSG00000276463 GRCh38: Ensembl release 89: ENSG00000273841, ENSG00000276463 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000052293 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. 1 2 "Entrez Gene: TAF9 TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa".
  6. Evans SC, Foster CJ, El-Naggar AK, Lozano G (April 1999). "Mapping and mutational analysis of the human TAF2G gene encoding a p53 cofactor". Genomics. 57 (1): 182–3. PMID 10191103. doi:10.1006/geno.1999.5745.
  7. Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL (August 1997). "Induced alpha helix in the VP16 activation domain upon binding to a human TAF". Science. 277 (5330): 1310–3. PMID 9271577. doi:10.1126/science.277.5330.1310.Uesugi M, Verdine GL (December 1999). "The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2". Proc. Natl. Acad. Sci. U.S.A. 96 (26): 14801–6. PMC 24728Freely accessible. PMID 10611293. doi:10.1073/pnas.96.26.14801.Choi Y, Asada S, Uesugi M (May 2000). "Divergent hTAFII31-binding motifs hidden in activation domains". J. Biol. Chem. 275 (21): 15912–6. PMID 10821850. doi:10.1074/jbc.275.21.15912.Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L (April 1999). "Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains". Oncogene. 18 (14): 2405–10. PMID 10327062. doi:10.1038/sj.onc.1202539.Lin J, Chen J, Elenbaas B, Levine AJ (May 1994). "Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein". Genes Dev. 8 (10): 1235–46. PMID 7926727. doi:10.1101/gad.8.10.1235.
  8. 1 2 Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics. 89 (6): 756–68. PMID 17467953. doi:10.1016/j.ygeno.2007.02.003.
  9. The prediction for 9aa TADs (for both acidic and hydrophilic transactivation domains) is available online from National EMBnet-Node Austria ("9aaTAD Prediction Webtool". EMBnet AUSTRIA. Retrieved 2009-01-10.)
  10. 1 2 3 4 5 6 7 8 9 10 11 12 Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (Oct 2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo". Mol. Cell. Biol. 21 (20): 6782–95. PMC 99856Freely accessible. PMID 11564863. doi:10.1128/MCB.21.20.6782-6795.2001.
  11. Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E (May 2003). "c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation". J. Biol. Chem. 278 (22): 20405–12. PMC 4031917Freely accessible. PMID 12660246. doi:10.1074/jbc.M211795200.
  12. Tao Y, Guermah M, Martinez E, Oelgeschläger T, Hasegawa S, Takada R, Yamamoto T, Horikoshi M, Roeder RG (Mar 1997). "Specific interactions and potential functions of human TAFII100". J. Biol. Chem. 272 (10): 6714–21. PMID 9045704. doi:10.1074/jbc.272.10.6714.
  13. Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L, Mantovani R (Jun 1997). "CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues". Nucleic Acids Res. 25 (11): 2174–81. PMC 146709Freely accessible. PMID 9153318. doi:10.1093/nar/25.11.2174.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.