Systematic code

In coding theory, a systematic code is any error-correcting code in which the input data is embedded in the encoded output. Conversely, in a non-systematic code the output does not contain the input symbols.

Systematic codes have the advantage that the parity data can simply be appended to the source block, and receivers do not need to recover the original source symbols if received correctly this is useful for example if error-correction coding is combined with a hash function for quickly determining the correctness of the received source symbols, or in cases where errors occur in erasures and a received symbol is thus always correct. Furthermore, for engineering purposes such as synchronization and monitoring, it is desirable to get reasonable good estimates of the received source symbols without going through the lengthy decoding process which may be carried out at a remote site at a later time.[1]

Properties

Every non-systematic linear code can be transformed into a systematic code with essentially the same properties (i.e., minimum distance).[1][2] Because of the advantages cited above, linear error-correcting codes are therefore generally implemented as systematic codes. However, for certain decoding algorithms such as sequential decoding or maximum-likelihood decoding, a non-systematic structure can increase performance in terms of undetected decoding error probability when the minimum free distance of the code is larger.[1][3]

For a systematic linear code, the generator matrix, , can always be written as , where is the identity matrix of size .

Examples

Notes

  1. 1 2 3 James L. Massey, Daniel J. Costello, Jr. (1971). "Nonsystematic convolutional codes for sequential decoding in space applications". IEEE Transactions on Communication Technology. 19 (5). doi:10.1109/TCOM.1971.1090720.
  2. Richard E. Blahut (2003). Algebraic codes for data transmission (2nd ed.). Cambridge. Univ. Press. pp. 53–54. ISBN 978-0-521-55374-2.
  3. Shu Lin; Daniel J. Costello, Jr. (1983). Error Control Coding: Fundamentals and Applications. Prentice Hall. pp. 278–280. ISBN 0-13-283796-X.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.