Syntactic monoid

In mathematics and computer science, the syntactic monoid M(L) of a formal language L is the smallest monoid that recognizes the language L.

Syntactic quotient

The free monoid on a given set is the monoid whose elements are all the strings of zero or more elements from that set, with string concatenation as the monoid operation and the empty string as the identity element. Given a subset of a free monoid , one may define sets that consist of formal left or right inverses of elements in . These are called quotients, and one may define right or left quotients, depending on which side one is concatenating. Thus, the right quotient of by an element from is the set

Similarly, the left quotient is

Syntactic equivalence

The syntactic quotient induces an equivalence relation on M, called the syntactic relation, or syntactic equivalence (induced by S). The right syntactic equivalence is the equivalence relation

Similarly, the left syntactic relation is

The syntactic congruence or Myhill congruence[1] may be defined as[2]

The definition extends to a congruence defined by a subset S of a general monoid M. A disjunctive set is a subset S such that the syntactic congruence defined by S is the equality relation.[3]

The syntactic quotient is compatible with concatenation in the monoid, in that one has

for all (and similarly for the left quotient). Thus, the syntactic quotient is a monoid morphism, and induces a quotient monoid

This monoid is called the syntactic monoid of S. It can be shown that it is the smallest monoid that recognizes S; that is, M(S) recognizes S, and for every monoid N recognizing S, M(S) is a quotient of a submonoid of N. The syntactic monoid of S is also the transition monoid of the minimal automaton of S.[1][2][4]

Similarly, a language L is regular if and only if the family of quotients

is finite.[1] The proof showing equivalence is quite easy. Assume that a string x is read by a deterministic finite automaton, with the machine proceeding into state p. If y is another string read by the machine, also terminating in the same state p, then clearly one has . Thus, the number of elements in is at most equal to the number of states of the automaton and is at most the number of final states. Assume, conversely, that the number of elements in is finite. One can then construct an automaton where is the set of states, is the set of final states, the language L is the initial state, and the transition function is given by . Clearly, this automaton recognizes L. Thus, a language L is recognizable if and only if the set is finite. Note that this proof also builds the minimal automaton.

Given a regular expression E representing S, it is easy to compute the syntactic monoid of S.

A group language is one for which the syntactic monoid is a group.[5]

Examples

References

  1. 1 2 3 Holcombe (1982) p.160
  2. 1 2 Lawson (2004) p.210
  3. Lawson (2004) p.232
  4. Straubing (1994) p.55
  5. 1 2 Sakarovitch (2009) p.342
  6. Straubing (1994) p.54
  7. 1 2 McNaughton, Robert; Papert, Seymour (1971). Counter-free Automata. Research Monograph. 65. With an appendix by William Henneman. MIT Press. p. 48. ISBN 0-262-13076-9. Zbl 0232.94024.
  8. Lawson (2004) p.233
  9. Marcel-Paul Schützenberger (1965). "On finite monoids having only trivial subgroups" (PDF). Information and Computation. 8 (2): 190–194. doi:10.1016/s0019-9958(65)90108-7.
  10. Straubing (1994) p.60
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.