Symmetric monoidal category

In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces.

Definition

A symmetric monoidal category is a monoidal category (C, ⊗, I) such that, for every pair A, B of objects in C, there is an isomorphism that is natural in both A and B and such that the following diagrams commute:

In the diagrams above, a, l , r are the associativity isomorphism, the left unit isomorphism, and the right unit isomorphism respectively.

Examples

Some examples and non-examples of symmetric monoidal categories:

Properties

The classifying space (geometric realization of the nerve) of a symmetric monoidal category is an space, so its group completion is an infinite loop space.[1]

Specializations

The dagger symmetric monoidal categories are symmetric monodal categories with an additional dagger structure.

A cosmos is a complete cocomplete closed symmetric monoidal category.

Generalizations

In a symmetric monoidal category, the natural isomorphisms are their own inverses in the sense that . If we abandon this requirement (but still require that be naturally isomorphic to ), we obtain the more general notion of a braided monoidal category.

References

  1. R.W. Thomason, "Symmetric Monoidal Categories Model all Connective Spectra", Theory and Applications of Categories, Vol. 1, No. 5, 1995, pp. 78– 118.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.