SuperWASP

Wide Angle Search for Planets

SuperWASP-South cameras on OMI equatorial mount
Abbreviation WASP
Purpose Search for distant planets
Region served
La Palma and Sutherland
Membership
Eight universities
Website wasp-planets.net
www.superwasp.org

WASP or Wide Angle Search for Planets is an international consortium of several academic organisations performing an ultra-wide angle search for exoplanets using transit photometry. The array of robotic telescopes aims to survey the entire sky, simultaneously monitoring many thousands of stars at an apparent visual magnitude from about 7 to 13.[1]

SuperWASP is the detection program composed of the Isaac Newton Group, IAC and six universities from the United Kingdom. The two continuously operating, robotic observatories cover the Northern and Southern Hemisphere, respectively. SuperWASP-North is located at Roque de los Muchachos Observatory on the island of La Palma in the Canary Island, Spain, while SuperWASP-South is located at the site of the South African Astronomical Observatory, near Sutherland, South Africa. Both observatories use eight wide-angle cameras that simultaneously monitor the sky for planetary transit events and allow the monitoring of millions of stars simultaneously, enabling the detection of rare transit events.[2]

Instruments used for follow-up characterization employing doppler spectroscopy to determine the exoplanet's mass include the HARPS spectrograph of ESO's 3.6-metre telescope as well as the Swiss Euler Telescope, both located at La Silla Observatory, Chile.[3] WASP's design has also been adopted by the Next-Generation Transit Survey.[4] As of 2016, the Extrasolar Planets Encyclopaedia data base contains a total of 2,107 extrasolar planets of which 118 were discoveries by WASP.[5]

Equipment

WASP consists of two robotic observatories; SuperWASP-North at Roque de los Muchachos Observatory on the island of La Palma in the Canaries and WASP-South at the South African Astronomical Observatory, South Africa. Each observatory consists of an array of eight Canon 200 mm f1.8 lenses backed by high quality 2048 x 2048 science grade CCDs, the model used is the iKon-L[6] manufactured by Andor Technology.[7] The telescopes are mounted on an equatorial telescope mount built by Optical Mechanics, Inc.[8] The large field of view of the Canon lenses gives each observatory a massive sky coverage of 490 square degrees per pointing.[9]

Function

The observatories continuously monitor the sky, taking a set of images approximately once per minute, gathering up to 100 gigabytes of data per night. By using the transit method, data collected from WASP can be used to measure the brightness of each star in each image, and small dips in brightness caused by large planets passing in front of their parent stars can be searched for.

One of the main purpose of WASP was to revolutionize the understanding of planet formation, paving the way for future space missions searching for 'Earth'-like worlds.

Structure

WASP is operated by a consortium of academic institutions which include:

On 26 September 2006, the team reported the discovery of two extrasolar planets: WASP-1b (orbiting 6 million km from star once every 2.5 days) and WASP-2b (orbiting 4.5 million km from star once every 2 days).[10]

On 31 October 2007, the team reported the discovery of three extrasolar planets: WASP-3b, WASP-4b and WASP-5b. All three planets are similar to Jovian mass and are so close to their respective stars that their orbital periods are all less than two days. These are among the shortest orbital periods discovered. The surface temperatures of the planets should be more than 2000 degrees Celsius, owing to their short distances from their respective stars. The WASP-4b and WASP-5b planets are the first planets discovered by the WASP project's cameras in South Africa, while WASP-3b is the third planet discovered by the WASP project's cameras in La Palma.

In August 2009, the discovery of WASP-17b was announced, believed to be the first planet ever discovered to orbit in the opposite direction to the spin of its star, WASP-17.

Discoveries and follow-up observations

Star Constellation Right
ascension
Declination App.
mag.
Distance (ly) Spectral
type
Planet Mass
(MJ)
Radius
(RJ)
Orbital
period

(d)
Semimajor
axis

(AU)
Orbital
eccentricity
Inclination
(°)
Discovery
year
WASP-1 Andromeda 00h 20m 40s +31° 59 24 11.79 1031 F7V b 0.86 1.484 2.5199464 0.0382 0 88.65 2006
WASP-2 Delphinus 20h 30m 54s +06° 25 46 11.98 493 K1V b 0.847 1.079 2.15222144 0.03138 0 84.73 2006
WASP-3 Lyra 18h 33m 32s +35° 39 42 10.64 727 F7V b 2.06 1.454 1.8468372 0.0313 0 85.06 2007
WASP-4 Phoenix 23h 34m 15s −42° 03 41 12.6 851 G7V b 1.1215 1.363 1.33823187 0.02312 0 88.8 2007
WASP-5 Phoenix 23h 57m 24s −41° 16 38 12.26 967 G4V b 1.58 1.09 1.6284296 0.02683 0 85.8 2007
WASP-6 Aquarius 23h 12m 37s −22° 40 06 12.4 1001 G8V b 0.5 1.3 3.36 0.0269 0.054 88.47 2008
WASP-7 Microscopium 20h 44m 10s −39° 13 31 9.51 460 F5V b 0.96 0.915 4.954658 0.0618 0 89.6 2008
WASP-8 Sculptor 23h 59m 36.07s −35° 01 52.9 9.9 160 G6 b 2.23 1.17 8.16 0.0793 0.3082 88.52 2008
WASP-8 Sculptor 23h 59m 36.07s −35° 01 52.9 9.9 160 G6 c 9.45 4323 5.28 2014
WASP-10 Pegasus 23h 15m 58s +31° 27 46 12.7 290 K5 b 3.06 1.08 3.0927616 0.0371 0.057 86.8 2008
WASP-11/HAT-P-10 Perseus 03h 09m 29s +30° 40 25 11.89 408 K3V b 0.460 1.045 3.7224690 0.0439 0 88.5 2008
WASP-12 Auriga 06h 30m 32.794s +29° 40 20.29 11.7 871 G0V b 1.404 1.736 1.0914222 0.02293 0 86 2008
WASP-13 Lynx 09h 20m 24.71s +33° 52 57.0 10.7 509 G1V b 0.485 1.365 4.353011 0.05379 0 85.64 2008
WASP-14 Boötes 14h 33m 06s +21° 53 41 9.75 520 F5V b 7.725 1.259 2.2437704 0.037 0.0903 84.79 2008
WASP-15 Hydra 13h 55m 42.71s −32° 09 34.6 10.9 1005 F5 b 0.54 1.16 3.75 0.0472 0 85.5 2008
WASP-16 Virgo 14h 18m 43.92s −20° 16 31.8 11.3 520 G3V b 0.855 1.008 3.12 0.0421 0 85.22 2009
WASP-17 Scorpius 15h 59m 51s −28° 03 42 11.6 1000 F6 b 0.486 1.991 3.735438 0.0515 0.028 86.83 2009
WASP-18 Phoenix 01h 37m 24.95s −45° 40 40.8 9.29 330 F9 b 10.3 1.106 0.94145299 0.02026 0.0092 86 2009
WASP-19 Vela 09h 43m 40.077s −45° 39 33.06 12.3 815 G8V b 1.168 1.386 0.78884 0.01655 0.0046 79.4 2009
WASP-20 00h 20m 38.53s −23° 56 08.6 10.7 685 F9 b 0.31 1.459 4.9 0.06003 85.57 2011
WASP-21 Pegasus 23h 09m 58.23s +18° 23 46.0 11.6 750 G3V b 0.3 1.21 4.322506 0.052 0 87.29 2010
WASP-22 Orion 03h 31m 16.32s −23° 49 11.0 12.0 980 G1 b 0.588 1.158 3.5327313 0.04698 0 88.26 2010
WASP-23 Puppis 06h 44m 31s −42° 45 43 12.7 K1V b 0.884 0.962 2.9444256 0.0376 < 0.062 88.39 2010
WASP-24 Virgo 15h 08m 51.72s +02° 20 36.1 11.3 1080 F8-9 b 1.03 1.10 2.341 0.0359 0 85.71 2010
WASP-25 Hydra 13h 01m 26.36s −27° 31 20.0 11.9 550 G4 b 0.58 1.26 3.765 0.0487 0 87.7 2010
WASP-26 Cetus 00h 18m 24.70s −15° 16 02.3 11.3 815 G0 b 1.028 1.281 2.7566004 0.03985 0 82.91 2010
WASP-28 Pisces 23h 34m 27.87s −01° 34 48.1 12 1090 F8 b 1.12 0.91 3.409 0.0455 0.046 88.61 2010
WASP-29 Phoenix 23h 51m 31.08s −39° 54 24.2 11.3 260 K4V b 0.25 0.74 3.923 0.0456 0 87.96 2010
WASP-31 Crater 11h 17m 45s −19° 03 17 11.7 1305 F b 0.478 1.537 3.405909 0.04657 0 84.54 2010
WASP-32 Pisces 00h 15m 51s +01° 12 02 11.3 G b 3.6 1.18 2.71865 0.0394 0.018 85.3 2010
WASP-33 Andromeda 02h 26m 51.05s +37° 33 01.7 8.3 378 A5 b < 4.59 1.438 1.21986967 0.02558 0 87.67 2010
WASP-34 Crater 11h 01m 36s −23° 51 38 10.4 391 G5 b 0.59 1.22 4.3176782 0.0524 0.038 85.2 2010
WASP-35 G0 b 0.72 1.32 3.161575 0.04317 87.96 2011
WASP-36 Hydra 08h 45m 19.0s −08° 01 37 12.7 1468 G2 b 2.279 1.269 1.53737 0.02624 83.65 2010
WASP-37 Virgo 14h 47m 46.62s +01° 03 53.4 12.7 1102 G2 b 1.696 1.136 3.577471 0.04339 0 88.78 2010
WASP-38 Hercules 16h 15m 50s +10° 01 57 9.42 359 F8 b 2.712 1.079 6.871815 0.07551 0.0321 88.69 2010
WASP-39 Virgo 14h 29m 18s −03° 26 40 12.11 750 G8 b 0.28 1.27 4.055259 0.0486 0 87.83 2011
WASP-40/HAT-P-27 Virgo 14h 51m 04.25s +05° 56 50.4 12.21 665 G8 b 0.66 1.055 3.0395721 0.0403 0.078 84.98 2011
WASP-41 Centaurus 12h 42m 28.51s −30° 38 23.5 11.6 587 G8V b 0.92 1.21 3.052394 0.04 0 87.3 2010
WASP-42 12h 51m 55.62s −42° 04 25.2 12.57 K1 b 0.5 1.08 4.98169 0.0458 0.06 88.25 2011
WASP-43 Sextans 10h 19m 38s −09° 48 23 12.4 K7V b 1.78 0.93 0.813475 0.0142 0 82.6 2011
WASP-44 Cetus 00h 15m 37s −11° 56 17 12.9 G8V b 0.889 1.14 2.4238039 0.03473 0 86.02 2011
WASP-45 Sculptor 00h 20m 57s −35° 59 54 12 K2V b 1.007 1.16 3.1260876 0.04054 0 84.47 2011
WASP-46 Indus 21h 14m 57s −55° 52 18 12.9 G6V b 2.101 1.31 1.43037 0.02448 0 82.63 2011
WASP-47 Aquarius 20h 40m 09.16s −00° 52 15.0 11.9 652 G9V b 1.14 1.15 4.15914 89.2 2011
WASP-48 Cygnus 19h 24m 39s +55° 28 23 11.06 F/G b 0.98 1.67 2.143634 0.03444 0 80.09 2011
WASP-49 06h 04m 21.47s −16° 57 55.1 11.36 G6 b 0.378 1.115 2.78174 84.89 2011
WASP-50 Eridanus 02h 54m 45s −10° 53 53 11.6 750 G9 b 1.468 1.153 1.9550959 0.02945 0.009 84.74 2011
WASP-51/HAT-P-30 Draco 08h 15m 48s +05° 50 12 10.36 629 F9 b 0.711 1.34 2.810595 0.0419 0.035 83.6 2011
WASP-52 Pegasus 23h 13m 59.0s +08° 45 41 12 457 K2V b 0.46 1.27 1.74978 85.35 2011
WASP-53 b 2.5 1.2 3.3 2011
WASP-54 03h 41m 49.02 s −00° 07 41 10.42 F9V/IV b 0.6 1.4 3.7 2011
WASP-55 Virgo 08h 15m 48s +05° 50 12 11.8 1076 b 0.57 1.3 4.46563 0.0533 89.2 2011
WASP-56 02h 13m 27.90s +23° 30 20.2 11.48 G6 b 0.6 1.2 4.6 2011
WASP-57 14h 55m 16.84s −02° 03 27.5 13.34 G6 b 0.8 1.1 2.8 2011
WASP-58 Lyra 18h 18m 48.0s +45° 10 19 11.66 978 G2V b 0.89 1.37 5.01718 0.0561 87.4 2011
WASP-59 Pegasus 23h 18m 30.0s +24° 53 21 13 408 K5V b 0.7 0.9 7.9 2011
WASP-60 Pegasus 23h 15m 58s +31° 27 46 12.18 1305 G1V b 0.5 0.86 4.305 0.0531 0 87.9 2011
WASP-61 Lepus 05h 01m 12.0s −26° 03 15 12.5 1566 F7 b 2.06 1.24 3.8559 0.0514 89.35 2011
WASP-62 Dorado 05h 48m 34.0s −63° 59 18 10.3 1566 F7 b 0.57 1.39 4.41195 0.0567 88.3 2011
WASP-63 Columba 06h 17m 21.0s −38° 19 24 11.2 1076 G8 b 0.38 1.43 4.37809 0.574 87.8 2011
WASP-64 b 1.2 0.7 1.6 2011
WASP-65 Cancer 08h 53m 18s +08° 31 23 11.9 1010 G6 b 1.6 1.3 2.3 2011
WASP-66 Antlia 10h 32m 54.0s −34° 59 23 11.6 1239 F4 b 2.32 1.39 4.08605 0.0546 85.9 2011
WASP-67 Sagittarius 19h 42m 59.0s −19° 56 58 12.5 734 K0V b 0.42 1.4 4.61442 0.0517 85.8 2011
WASP-68 20h 20m 22.98s −19° 18 52.9 10.7 G0 b 0.95 1.24 5.08 2011
WASP-69 K b 0.3 1 3.9 2011
WASP-70A G4 b 0.6 0.8 3.7 2011
WASP-71 Cetus 01h 57m 03.0s 00° 45 32 10.57 652 F8 b 2.258 1.5 2.90367 84.2 2012
WASP-72 Fornax 00h 10m 56.6s −30° 10 09 9.6 F7 b 1.5461 1.27 2.21674 0.03708 2013
WASP-73 Indus 21h 19m 47.91s −58° 08 56 10.5 F9 b 1.88 1.16 4.087 0.05514 2013
WASP-75 Cetus 01h 31m 18.2s −10:40:32° 11.45 848 F9 b 1.07 1.27 2.48419 0.0375 82 2013
WASP-76 Pisces 01h 46m 32.0s 02° 42 02 9.5 390 F7 b 0.92 1.83 1.80989 0.033 88 2013
WASP-77A Cetus 02h 28m 37.0s −07° 03 38 11.29 G8V b 1.76 1.21 1.36003 89.4 2012
WASP-78 Eridanus 04h 15m 02.0s −22° 06 59 12.0 1794 F8 b 1.16 1.75 2.17518 0.0415 89 2012
WASP-79 Eridanus 04h 25m 29.0s −30° 36 02 10.1 783 F3 b 0.89 1.7 2.17518 0.0362 83.2 2012
WASP-80 Aquila 20h 12m 40.0s −02° 08 44 11.88 196 K7V b 0.554 0.952 3.06785 0.0346 0.07 89.92 2013
WASP-82 Orion 04h 50m 39s +01° 53 38 10.1 650 F5 b 1.24 1.67 2.70578 0.0447 87.9 2013
WASP-84 Hydra 08h 44m 26s +01° 50 36 390 K0 b 0.694 0.942 8.52349 0.0771 88.368 2013
WASP-85A 11h 43m 38.1s +06° 33 49.4 11.2 407±260 G5 b 1.09 1.44 2.66 0.1138 ~0 89.72 2014
WASP-87 A Centaurus 12h 21m 17.92s −52° 50 276 10.7 780 F5 b 2.18 1.385 1.6827950 0.02946 81.07 2014
WASP-88 Indus 20h 38m 02.7s −48° 27 43.2 11.4 F6 b 0.56 1.7 4.954 0.06432 2013
WASP-90 Equuleus 21h 02m 08s +07° 03 24 11.7 1100 F6 b 0.63 1.63 3.91624 0.0562 82.1 2013
WASP-94A 20h 55m 07.94s −34° 08 07.9 10.1 587 F8 b 0.445 1.72 3.95 0.055 <0.13 88.7 2014
WASP-94B 20h 55m 09.16s −34° 08 07.9 10.5 587 F9 b ≥0.617 2.008 0.0335 2014
WASP-95 Grus 21h 02m 08s −48° 00 11 10.1 G2 b 1.13 1.21 2.18467 0.03416 88.4 2013
WASP-96 Phoenix 00h 04m 11s −47° 21 38 12.2 G8 b 0.48 1.2 3.42526 0.0453 85.6 2013
WASP-97 Eridanus 01h 38m 25s −55° 46 19 10.6 G5 b 1.32 1.13 2.07276 0.03303 88 2013
WASP-98 Eridanus 03h 53m 42s −34° 19 42 13.0 G7 b 0.83 1.1 2.96264 0.036 86.3 2013
WASP-99 Eridanus 02h 39m 35s −50° 00 29 9.5 F8 b 2.78 1.1 5.75251 0.0717 88.8 2013
WASP-100 Reticulum 04h 35m 50s −64° 01 37 10.8 F2 b 2.03 1.69 2.84938 0.0457 82.6 2013
WASP-101 Canis Major 06h 33m 24s −23° 29 10 10.3 F6 b 0.5 1.41 3.58572 0.0506 85 2013
WASP-103 Hercules 16h 37m 15.5s +07° 11 00.07 12.1 F8 b 1.49 1.53 0.925 0.01985 86.3 2014
WASP-104 10h 42m 24.61s +07° 26 6.3 11.12 466 G8 b 1.272 1.137 1.7554137 0.02918 83.63 2014
WASP-106 11h 05m 43.13s −05° 04 45.9 11.21 923 F9 b 1.925 1.085 9.289715 0.0917 89.49 2014
WASP-108 13h 03m 19s −49° 38 23 11.2 717 F9 b 1.167 1.215 2.6755463 0.0397 88.49 2014
WASP-109 15h 28m 13.0s −16° 24 39 11.4 1076 F4 b 0.91 1.443 3.3190233 0.0463 84.28 2014
WASP-110 20h 23m 30s −44° 03 30 12.3 1043 G9 b 0.515 1.238 3.7783977 0.0457 88.06 2014
WASP-111 21h 55m 04s −22° 36 45 10.3 684 F5 b 1.83 1.442 2.310965 0.03914 81.61 2014
WASP-112 22h 37m 57s −35° 09 14 13.3 1337 G6 b 0.88 1.191 3.0353992 0.0382 88.68 2014
WASP-117 02h 27m 06.09s −50° 17 04.3 10.15 F9V b 0.2755 1.021 10.02165 0.09459 0.302 89.14 2014 [11]
WASP-118 b
WASP-119 b
WASP-120 b
WASP-121 b
WASP-122 b
WASP-123 b
WASP-124 b
WASP-126 b
WASP-127 b
WASP-129 b
WASP-131 b
WASP-132 b
WASP-133 b
WASP-135 b
WASP-136 b
WASP-138 b 2016 [12]
WASP-139 b
WASP-140 b
WASP-141 b
WASP-142 b
WASP-152 b
WASP-157 b

1SWASP J140747.93-394542.6 b

The discovery of the J1407 system and its unusual eclipses were first reported by a team led by University of Rochester astronomer Eric Mamajek in 2012.[13] The existence and parameters of the ring system around the substellar companion J1407b were deduced from the observation of a very long and complex eclipse of the previously anonymous star J1407 during a 56-day period during April and May 2007.[13][14] The low-mass companion J1407b has been referred to as a "Saturn on steroids"[15][16] or “Super Saturn[17] due to its massive system of circumplanetary rings with a radius of approximately 90 million km (0.6 AU).[18] The orbital period of the ringed companion J1407b is estimated to be around a decade (constrained to 3.5 to 13.8 years), and its most probable mass is approximately 13 to 26 Jupiter masses, but with considerable uncertainty.[18] The ringed body can be ruled out as being a star with mass of over 80 Jupiter masses at greater than 99% confidence.[18] The ring system has an estimated mass similar to that of the Earth.[19] A gap in the ring system at about 61 million km (0.4 AU) from its centre is considered to be indirect evidence of the existence of an exomoon with mass up to 0.8 Earth masses.[18]

Notes

See also

Other extrasolar planet search projects

Extrasolar planet searching spacecraft

References

  1. R. A. Street, D. L. Pollacco, A. Fitzsimmons, F. P. Keenan, Keith Horne, S. Kane, A. Collier Cameron, T. A. Lister, C. Haswell, A. J. Norton, B. W. Jones, I. Skillen, S. Hodgkin, P. Wheatley, R. West, D. Brett (2002). "SuperWASP: Wide Angle Search for Planets" (PDF).
  2. "SuperWASP Survey Information". NASA Exoplanet Science Institute. 5 February 2015.
  3. http://adsabs.harvard.edu/abs/2010A%26A...517L...1Q
  4. "Searching for Super-Earths" (PDF). Queen's University. 2014. Retrieved 1 September 2015.
  5. "Catalog". Extrasolar Planets Encyclopaedia. Retrieved 1 April 2016.
  6. http://wasp-planets.net/technical/
  7. http://www.andor.com
  8. http://www.opticalmechanics.com/news/index.html
  9. Current status of the SuperWASP project, D. J. Christian et al.
  10. WASP-1b and WASP-2b: Two new transiting exoplanets detected with SuperWASP and SOPHIE
  11. http://arxiv.org/abs/1406.6942
  12. https://arxiv.org/abs/1607.07859
  13. 1 2 Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L.; Kenworthy, Matthew A.; Collier Cameron, Andrew; Parley, Neil R. (March 2012). "Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks". The Astronomical Journal. 143: 72. Bibcode:2012AJ....143...72M. arXiv:1108.4070Freely accessible. doi:10.1088/0004-6256/143/3/72.
  14. "Eclipsing Ring System J1407". Cerro Tololo Inter-American Observatory. June 22, 2012. Retrieved January 27, 2015.
  15. St. Fleur, Nicholas (October 13, 2016). "Distant Ringed Object Could Be ‘Saturn on Steroids’". New York Times. Retrieved October 14, 2016.
  16. O'Neill, Ian (January 12, 2012). "'Saturn on Steroids' Exoplanet Discovered?". Discovery News. Retrieved January 27, 2014.
  17. Gigantic ring system around J1407b much larger, heavier than Saturn’s, on University of Rochester website.
  18. 1 2 3 4 Kenworthy, Matthew A.; Mamajek, Eric E. (January 22, 2015). "Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?". arXiv:1501.05652Freely accessible.
  19. "Gigantic ring system around J1407b much larger, heavier than Saturn's". University of Rochester. January 26, 2015. Retrieved January 27, 2015.

News items

Video clips

Coordinates: 28°45′37″N 17°52′45″W / 28.76023°N 17.87930°W / 28.76023; -17.87930

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.