Subterranean fauna

The olm (Proteus anguinus), a typical cave dwelling chordate, endemic of Dinaric Alps.

Subterranean fauna is referred to animal species adapted to live in underground environment. Troglofauna and stygofauna are the two types of subterranean fauna. Both are associated with hypogean habitats – troglofauna is associated with terrestrial subterranean environment (caves and underground spaces above the water table), and stygofauna with all kind of subterranean waters (groundwater, aquifers, subterranean rivers, dripping bowls, gours, etc.).

Environment

Subterranean fauna is found worldwide and includes representatives of many animal groups, mostly arthropods and other invertebrates. However, there is a number of vertebrates (such as cavefishes and cave salamanders), although they are less common. Because of the complexity in exploring underground environments, many subterranean species are yet to be discovered and described.

Peculiarities of underground habitat make it an extreme environment and, consequently, underground species are usually less than species living in epigean habitats. The main characteristic of underground environment is the lack of sunlight. Climatic values, like temperature and relative humidity, are generally almost stable – temperature corresponds to annual mean temperature in the place where the cavity opens, relative humidity rarely drops below 90%. Food sources are limited and localized. The lack of sunlight inhibits photosynthetic processes, so food comes only from epigean environment (through percolating water, gravity, or passive transport by animals). Important food sources in underground habitat are animals being decomposed and bat guano[1][2][3], that creates large invertebrate communities in such caves[4][5].

Ecological classification

Cave dwelling animals show different levels of adaptations to underground environment. According to a recent classification, animals living in terrestrial subterranean habitats can be classified into 3 categories, based on their ecology:

Regarding stygofauna, the corresponding words stygobionts (or stygobites), stygophiles and stygoxenes are used.

Biology

The cave beetle Leptodirus hochenwartii (family Leiodidae).

Characteristics of underground environment caused cave dwelling animals to evolve a number of adaptations, both morphological and physiological. Examples of morphological adaptations include depigmentation (loss of external pigmentation) and the extreme decrease of eyesight, until anophthalmia (complete loss of eyes). Other adaptation consists in development and elongation of antennal and locomotory appendages, in order to better move around and respond to environmental stimuli. These structures are also full of chemical, tactile and humidity receptors[1][2][3][7] (such as Hamann's organ in the cave beetle Leptodirus hochenwartii[8]).

Physiological adaptations include slow metabolism and reduced energy consumption, due to limited food supply and low energy efficiency. This is likely to be realized through reducing movements, erasing aggressive interactions, improving feeding capability and food usage efficiency, and through ectothermy. As a consequence, cave dwelling animals can resist without eating for long time, live more than comparable epigean species, reproduce late in their lifespan, and produce less and bigger eggs.[1][2][9]

Evolution and ecology

Subterranean fauna have evolved in isolation.[10] Stratigraphic barriers, such as rock walls and layers, and fluvial barriers, such as rivers and streams, prevent or hinder the dispersal of these animals.[11] Consequently, subterranean fauna habitat and food availability can be very disjunct and precludes the great range of observed diversity across landscapes.

Threats to subterranean fauna

Floodwaters can be detrimental to subterranean species, by dramatically changing the availability of habitat, food and connectivity to other habitats and oxygen. Many subterranean fauna are likely to be sensitive to changes in their environment and floods, which can accompany a drop in temperature, may adversely affect some animals.[12]

Humans also pose a threat to troglofauna. Mismanagement of contaminants (e.g. pesticides and sewage) may poison subterranean fauna communities[10] and removal of habitat (e.g. rising/lowering of the watertable or various forms of mining) can also be a major threat.

See also

References

  1. 1 2 3 Stoch, Fabio (2001). Caves and karstic phenomena. Life in subterranean world (PDF). Italian Habitats. Udine, Italy: Italian Ministry of the Environment and Territory Protection and Friuli Museum of Natural History.
  2. 1 2 3 Culver, D.C.; White, W.B. (2012). Encyclopedia of caves (2nd ed.). Waltham, MA: Elsevier/Academic Press. ISBN 9780123838322. OCLC 776633368.
  3. 1 2 Culver, D.C.; Pipan, Tanja (2009). The biology of caves and other subterranean habitats. New York: Oxford University Press. ISBN 9780199219933. OCLC 248538645.
  4. Ferreira, R. L.; Martins, R. P.; Prous, X. (2007-01-07). "Structure of bat guano communities in a dry Brazilian cave". Tropical Zoology. 20 (1): 55–74. ISSN 1970-9528.
  5. Ferreira, R. L.; Martins, R. P. (1999-12-01). "Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves". Tropical Zoology. 12 (2): 231–252. ISSN 0394-6975. doi:10.1080/03946975.1999.10539391.
  6. Sket, Boris (2008-06-01). "Can we agree on an ecological classification of subterranean animals?". Journal of Natural History. 42 (21-22): 1549–1563. ISSN 0022-2933. doi:10.1080/00222930801995762.
  7. Vandel, Albert (1965). Biospeleology: the biology of cavernicolous animals. Oxford: Pergamon Press. ISBN 9781483185132. OCLC 893738507.
  8. Marco, Lucarelli; Valerio, Sbordoni, (1977). "Humidity responses and the role of Hamann's organ of cavernicolous Bathysciinae (Coleoptera Catopidae)". International Journal of Speleology. 9: 167–177.
  9. Rusdea, E. (1994). Carabid Beetles: Ecology and Evolution. Springer, Dordrecht. pp. 207–212. doi:10.1007/978-94-017-0968-2_32.
  10. 1 2 Kevin Krajick (September 2007). "Discoveries in the dark". National Geographic.
  11. Thomas L. Poulson & William B. White, (1969). "The cave environment". Science. 165 (3897): 971–981. PMID 17791021. doi:10.1126/science.165.3897.971.
  12. John Lamoreux (2004). "Stygobites are more wide-ranging than troglobites" (PDF). Journal of Cave and Karst Studies. 66 (1): 18–19.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.