Stress granule

Stress granules are dense aggregations in the cytosol composed of proteins & RNAs that appear when the cell is under stress.[1] The RNA molecules stored are stalled translation pre-initiation complexes: failed attempts to make protein from mRNA. Stress granules are 100–200 nm in size, not surrounded by membrane, and associated with the endoplasmatic reticulum.[2] Note that there are also nuclear stress granules. This article is about the cytosolic variety.

Proposed functions

Stress granules may function to protect RNAs from harmful conditions, thus their appearance under stress.[3] The accumulation of RNAs into dense globules could keep them from reacting with harmful chemicals and safe-guard the information coded in their RNA sequence.

Stress granules might also function as a decision point for untranslated mRNAs. Molecules can go down one of three paths: further storage, degradation, or re-initiation of translation.[4]

The stress proteins that are the main component of stress granules in plant cells are molecular chaperones that sequester, protect, and possibly repair proteins that unfold during heat and other types of stress.[5][6] Therefore, any association of mRNAs with stress granules may simply be a side effect of the association of partially unfolded RNA-binding proteins with stress granules,[7] similar to the association of mRNAs with proteasomes.[8]

Formation

Environmental stress triggers a series of signals which eventually lead to formation of stress granules. Early on, it involves phosphorylation of eukaryotic translation initiation factor eIF2α. Further downstream, prion-like aggregation of the protein TIA-1 leads to the formation of stress granules. The term prion-like is used because aggregation of TIA-1 is concentration dependent, inhibited by chaperones, and because the aggregates are resistant to proteases.[9] It has also been proposed that microtubules play a role in the formation of stress granules, maybe by transporting granule components. This hypothesis is based on the fact that disruption of microtubules with the chemical nocodazole blocks the appearance of the granules.[10] Furthermore, many signaling molecules were shown to regulate the formation or dynamics of stress granules; these include the master energy sensor AMP-activated protein kinase (AMPK),[11] the O-GlcNAc transferase enzyme (OGT)[12], and the pro-apoptotic kinase ROCK1.[13]

Connection with processing bodies

Stress granules and processing bodies share RNA and protein components, both appear under stress, and can physically associate with one another. While stress granules are associated with mRNAs, processing bodies are thought to be places of mRNA degradation. It has been proposed that mRNAs selected for degradation are passed from stress granules to processing bodies.[14]

Protein composition of stress granules

The complete proteome of stress granules is still unknown, but efforts have been made to catalog all of the proteins that have been experimentally demonstrated to transit into stress granules.[15][16] In 2016, stress granule "cores" were biochemically purified for the first time and proteins in the cores were identified in an unbiased manner using mass spectroscopy. This technical advance lead to the identification of hundreds of new stress granule-localized proteins.[17]

The following is a list of proteins that have been demonstrated to localize to stress granules (compiled from [15][16][17]):

Gene ID Protein Name Description References
ACTBL2 ACTBL2 Beta-actin-like protein 2 [17]
ACTR1A ACTR1A Alpha-centractin [17]
ACTR1B ACTR1B Beta-centractin [17]
ADAR ADAR1 Adenosine Deaminase, RNA Specific [18][17]
AGO1 Argonaute 1 Argonaute 1, RISC Catalytic Component [19]
AGO2 Argonaute 2 Argonaute 2, RISC Catalytic Component [20][19][21][17]
AKAP9 AKAP350 A-Kinase Anchoring Protein 9 [22]
ALDH18A1 ALDH18A1 Delta-1-pyrroline-5-carboxylate synthase [17]
ANG Angiogenin Angiogenin [23]
ANP32E ANP32E Acidic leucine-rich nuclear phosphoprotein 32 family member E [17]
ANXA1 ANXA1 Annexin A1 [17]
ANXA6 ANXA6 Annexin 6 [17]
ANXA7 ANXA7 Annexin 7 [17]
APEX1 APEX1 DNA-(apurinic or apyrimidinic site) lyase [17]
APOBEC3G APOBEC3G Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3G [19]
ARPC1B ARPC1B Actin-related protein 2/3 complex subunit 1B [17]
ASHA1 AHA1 Activator Of HSP90 ATPase Activity 1 [24]
ATAD2 ATAD2 ATPase family AAA domain-containing protein 2 [17]
ATAD3A ATAD3A ATPase family AAA domain-containing protein 3A [17]
ATP5A1 ATP5A1 ATP synthase subunit alpha, mitochondrial [17]
ATXN2 Ataxin 2 Ataxin 2 [17][25][26][27][28][29]
ATXN2L Ataxin-2 like Ataxin 2 Like [17][27]
BAG3 BAG3 BAG family molecular chaperone regulator 3 [17]
BANF1 BANF1 Barrier-to-autointegration factor [17]
BRAT1 BRAT1 BRCA1-associated ATM activator 1 [17]
BRF1 BRF1 BRF1, RNA Polymerase III Transcription Initiation Factor Subunit [14]
C15orf52 C15orf52 Uncharacterized protein C15orf52 [17]
CALML5 CALML5 Calmodulin-like protein 5 [17]
CALR Calreticulin/CRT Calreticulin [30]
CAP1 CAP1 Adenylyl cyclase-associated protein 1 [17]
CAPRIN1 Caprin-1 Cell Cycle Associated Protein 1 [31][22][32][17]
CAPZA2 CAPZA2 F-actin-capping protein subunit alpha-2 [17]
CARHSP1 CARHSP1 Calcium-regulated heat stable protein 1 [17]
CASC3 MLN51/BTZ Cancer Susceptibility 3 [33][34]
CBFB CBFB Core-binding factor subunit beta [17]
CBX1 CBX1 Chromobox protein homolog 1 [17]
CCAR1 CARP-1 Cell Division Cycle And Apoptosis Regulator 1 [22]
CCT3 CCT3 T-complex protein 1 subunit gamma [17]
CCT6A CCT6A T-complex protein 1 subunit zeta [17]
CDC37 CDC37 Cell Division Cycle 37 [24]
CDC5L CDC5L Cell division cycle 5-like protein [17]
CDC73 CDC73 Parafibromin [17]
CDK1 CDK1 Cyclin-dependent kinase 1 [17]
CDK2 CDK2 Cyclin Dependent Kinase 2 [35]
CELF1 CUGBP1 CUGBP Elav-Like Family Member 1 [17][36]
CENPB CENPB Major centromere autoantigen B [17]
CERKL Ceramide-Kinase Like Ceramide Kinase Like [37]
CFL1 Cofilin-1 Cofilin-1 [17]
CHCHD3 CHCHD3 Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial [17]
CHORDC1 CHORDC1/CHP1 Cysteine and histidine-rich domain-containing protein 1 [17]
CIRBP CIRP Cold Inducible RNA Binding Protein [38]
CIT CIT Citron Rho-interacting kinase [17]
CLIC4 CLIC4 Chloride intracellular channel protein 4 [17]
CNBP ZNF9 CCHC-Type Zinc Finger Nucleic Acid Binding Protein [39]
CNN3 CNN3 Calponin-3 [17]
CNOT1 CNOT1 CCR4-NOT transcription complex subunit 1 [17]
CORO1B CORO1B Coronin-1B [17]
CPB2 Carboxypeptidase B2 Carboxypeptidase B2 [40]
CPEB1 CPEB Cytoplasmic Polyadenylation Element Binding Protein 1 [41]
CPSF3 CPSF3 Cleavage and polyadenylation specificity factor subunit 3 [17]
CPSF6 CPSF6 Cleavage and polyadenylation specificity factor subunit 6 [17]
CPSF7 CPSF7 Cleavage and polyadenylation specificity factor subunit 7 [17]
CRYAB CRYAB Alpha-crystallin B chain [17]
CSDE1 CSDE1 Cold shock domain-containing protein E1 [17]
CSE1L CSE1L Exportin-2 [17]
CSTF1 CSTF1 Cleavage stimulation factor subunit 1 [17]
CTNNA2 CTNNA2 Catenin alpha-2 [17]
CTNND1 CTNND1 Catenin delta-1 [17]
CTTNBP2NL CTTNBP2NL CTTNBP2 N-terminal-like protein [17]
CWC22 CWC22 Pre-mRNA-splicing factor CWC22 homolog [17]
DAZAP1 DAZAP1 DAZ-associated protein 1 [17]
DAZAP2 PRTB DAZ Associated Protein 2 [42]
DAZL DAZL1 Deleted In Azoospermia Like [43]
DCD DCD Dermcidin [17]
DCP1A DCP1a Decapping mRNA 1 [17][41]
DCTN1 DCTN1 Dynactin subunit 1 [17]
DDX1 DEAD box protein 1 DEAD-Box Helicase 1 [17][44]
DDX19A DDX19A ATP-dependent RNA helicase DDX19A [17]
DDX21 DDX21 Nucleolar RNA helicase 2 [17]
DDX3 DEAD box protein 3 DEAD-Box Helicase 3 [17][45][46]
DDX47 DDX47 Probable ATP-dependent RNA helicase DDX47 [17]
DDX50 DDX50 ATP-dependent RNA helicase DDX50 [17]
DDX58 RIG-I DExD/H-Box Helicase 58 [47]
DDX6 DEAD box protein 6 DEAD-Box Helicase 6 [17][26][48][41][19]
DERA DERA Deoxyribose-Phosphate Aldolase [49]
DHX30 DHX30 Putative ATP-dependent RNA helicase DHX30 [17]
DHX36 RHAU DEAH-Box Helicase 36 [50]
DHX58 LGP2 DExH-Box Helicase 58 [47]
DISC1 Disrupted in Schizophrenia 1 Disrupted In Schizophrenia 1 [51]
DKC1 DKC1 H/ACA ribonucleoprotein complex subunit 4 [17]
DNAI1 Axonemal Dynein Intermediate Chain 1 Dynein Axonemal Intermediate Chain 1 [52]
DNAJA1 DNAJA1 DnaJ homolog subfamily A member 1 [17]
DNAJC8 DNAJC8 DnaJ homolog subfamily C member 8 [17]
DPYSL2 DPYSL2 Dihydropyrimidinase-related protein 2 [17]
DPYSL3 DPYSL3 Dihydropyrimidinase-related protein 3 [17]
DSP DSP Desmoplakin [17]
DST DST Dystonin [17]
DSTN DSTN Destrin [17]
DTX3L DTX3L E3 ubiquitin-protein ligase DTX3L [17]
DYNC1H1 Cytoplasmic Dynein Heavy Chain 1 Dynein Cytoplasmic 1 Heavy Chain 1 [52]
DYNLL1 Cytoplasmic Dynein Light Polypeptide Dynein Light Chain LC8-Type 1 [53]
DYNLL2 DYNLL2 Dynein light chain 2, cytoplasmic [17]
DYRK3 DYRK3 Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3 [54]
DZIP1 DZIP1 DAZ Interacting Zinc Finger Protein 1 [55]
EDC4 EDC4 Enhancer of mRNA-decapping protein 4 [17]
EIF2A EIF2A Eukaryotic Translation Initiation Factor 2A [14][17][22][56]
EIF2AK2 Protein Kinase R/PKR Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 [47]
EIF2B1-5 EIF2B Eukaryotic Translation Initiation Factor 2B [56]
EIF2S1 EIF2A subunit 1 Eukaryotic Translation Initiation Factor 2 Subunit Alpha [17]
EIF2S2 EIF2A subunit 2 Eukaryotic Translation Initiation Factor 2 Subunit Beta [17]
EIF3A EIF3A Eukaryotic Translation Initiation Factor 3 Subunit A [17][20][57]
EIF3B EIF3B Eukaryotic Translation Initiation Factor 3 Subunit B [14][17][42][58][59]
EIF3D EIF3D Eukaryotic translation initiation factor 3 subunit D [17]
EIF3E EIF3E Eukaryotic translation initiation factor 3 subunit E [17]
EIF3F EIF3F Eukaryotic translation initiation factor 3 subunit F [17]
EIF3G EIF3G Eukaryotic translation initiation factor 3 subunit G [17]
EIF3H EIF3H Eukaryotic translation initiation factor 3 subunit H [17]
EIF3I EIF3I Eukaryotic translation initiation factor 3 subunit I [17]
EIF3J EIF3J Eukaryotic translation initiation factor 3 subunit J [17]
EIF3K EIF3K Eukaryotic translation initiation factor 3 subunit K [17]
EIF3L EIF3L Eukaryotic translation initiation factor 3 subunit L [17]
EIF3M EIF3M Eukaryotic translation initiation factor 3 subunit M [17]
EIF4A1 EIF4A1 Eukaryotic Translation Initiation Factor 4A1 [17][60]
EIF4B EIF4B Eukaryotic translation Initiation factor 4B [17]
EIF4E EIF4E Eukaryotic Translation Initiation Factor 4E [57][56][2][61][34][62]
EIF4G1 EIF4G1 Eukaryotic Translation Initiation Factor 4G1 [17][57][56][2][61][63][64][42][65]
EIF4G2 EIF4G2 Eukaryotic Translation Initiation Factor 4G2 [17]
EIF4H EIF4H Eukaryotic translation Initiation factor 4H [17]
EIF5A EIF5A Eukaryotic Translation Initiation Factor 5A [58]
ELAVL1 HuR ELAV Like RNA Binding Protein 1 [17][66][57][67][61][62][42][53][68][69]
ELAVL2 ELAVL2 ELAV-like protein 2 [17]
ELAVL4 HuD ELAV Like RNA Binding Protein 4 [70]
EPPK1 EPPK1 Epiplakin [17]
ETF1 ETF1 Eukaryotic peptide chain release factor subunit 1 [17]
EWSR1 EWSR1 EWS RNA Binding Protein 1 [71][72]
FAM120A FAM120A Constitutive coactivator of PPAR-gamma-like protein 1 [17]
FAM98A FAM98A Protein FAM98A [17]
FASTK FAST Fas Activated Serine/Threonine Kinase [14]
FBL FBL rRNA 2-O-methyltransferase fibrillarin [17]
FHL1 FHL1 Four and a half LIM domains protein 1 [17]
FLNB FLNB Filamin-B [17]
FMR1 FMRP Fragile X Mental Retardation 1 [13][17][33][34][61][73][74]
FNDC3B FNDC3B Fibronectin type III domain-containing protein 3B [17]
FSCN1 FSCN1 Fascin [17]
FTSJ3 FTSJ3 pre-rRNA processing protein FTSJ3 [17]
FUBP3 FUBP3 Far upstream element-binding protein 3 [17]
FUS FUS FUS RNA Binding Protein [17][20][71][72][75][76]
FXR1 FXR1 FMR1 Autosomal Homolog 1 [17][73][61][62][77]
FXR2 FXR2 FMR1 Autosomal Homolog 2 [17][73][61]
G3BP1 G3BP1 G3BP Stress Granule Assembly Factor 1 [17][78][79][14][62][80][77]
G3BP2 G3BP2 G3BP Stress Granule Assembly Factor 2 [17][81][82]
GEMIN5 Gemin-5 Gem Nuclear Organelle Associated Protein 5 [63]
GFPT1 GFPT1 Glutamine—fructose-6-phosphate aminotransferase [isomerizing] 1 [17]
GNB2 GNB2 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 [17]
GRB7 GRB7 Growth Factor Receptor Bound Protein 7 [83]
GSPT1 eRF3 G1 To S Phase Transition 1 [84]
H1F0 H1F0 Histone H1.0 [17]
H1FX H1FX Histone H1x [17]
H2AFV H2AFV Histone H2A.V [17]
HABP4 Ki-1/57 Hyaluronan Binding Protein 4 [85]
HDAC6 HDAC6 Histone Deacetylase 6 [80]
HELZ HELZ Probable helicase with zinc finger domain [17]
HELZ2 HELZ2 Helicase with zinc finger domain 2 [17]
HMGA1 HMGA1 High mobility group protein HMG-I/HMG-Y [17]
HMGB3 HMGB3 High mobility group protein B3 [17]
HMGN1 HMGN1 Non-histone chromosomal protein HMG-14 [17]
HNRNPA1 HnRNPA1 Heterogeneous Nuclear Ribonucleoprotein A1 [17][20][86][87][88]
HNRNPA2B1 HnRNPA2/B1 Heterogeneous Nuclear Ribonucleoprotein A2/B1 [17][89]
HNRNPA3 HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 [17]
HNRNPAB HNRNPAB Heterogeneous nuclear ribonucleoprotein A/B [17]
HNRNPH2 HNRNPH2 Heterogeneous nuclear ribonucleoprotein H2 [17]
HNRNPK HnRNPK Heterogeneous Nuclear Ribonucleoprotein K [17][69][90]
HNRNPUL1 HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like protein 2 [17]
HSP90AA1 HSP90 Heat shock protein HSP 90-alpha [17]
HSPA4 HSP70 RY Heat shock 70 kDa protein 4 [17]
HSPA9 HSP70 9B Stress-70 protein, mitochondrial [17]
HSPB1 HSP27 Heat Shock Protein Family B (Small) Member 1 [17][91]
HSPD1 HSPD1 60 kDa heat shock protein, mitochondrial [17]
Htt Huntingtin Huntingtin [32]
IFIH1 MDA5 Interferon Induced With Helicase C Domain 1 [47]
IGF2BP1 IGF2BP1 Insulin-like Growth Factor 2 mRNA-binding protein 1 [17]
IGF2BP2 IGF2BP2 Insulin-like Growth Factor 2 mRNA-binding protein 2 [17]
IGF2BP3 IGF2BP3 Insulin-like Growth Factor 2 mRNA Binding Protein 3 [17][81]
IK IK Protein Red [17]
ILF3 NF90 Interleukin Enhancer Binding Factor 3 [92]
IPO7 IPO7 Importin-7 [17]
IPPK IP5K Inositol-Pentakisphosphate 2-Kinase [93]
ITGB1 ITGB1 Integrin beta-1 [17]
KANK2 KANK2 KN motif and ankyrin repeat domain-containing protein 2 [17]
KHDRBS1 Sam68 KH RNA Binding Domain Containing, Signal Transduction Associated 1 [17][94][95]
KHDRBS3 KHDRBS3 KH domain-containing, RNA-binding, signal transduction-associated protein 3 [17]
KHSRP KSRP/FBP2 KH-Type Splicing Regulatory Protein [17][96]
KIAA1524 CIP2A Protein CIP2A [17]
KIF23 KIF23 Kinesin-like protein KIF23 [17]
KIF2A Kinesin Heavy Chain Member 2 Kinesin Family Member 2A [52]
KLC1 Kinesin Light Chain 1 Kinesin Light Chain 1 [52]
KNPA1 Importin-ɑ5 Karyopherin Subunit Alpha 1 [17][97]
KPNA2 Importin-ɑ1 Karyopherin Subunit Alpha 2 [17][97][98]
KNPA3 Importin-ɑ4 Karyopherin Subunit Alpha 3 [97]
KPNA6 Importin-ɑ7 Importin subunit alpha [17]
KPNB1 Importin-β1 Karyopherin Subunit Beta 1 [17][97]
L1 ORF retrotransposon LINE1 ORF1p LINE1 ORF1 protein  [17][20]
LARP1 LARP1 La-related protein 1 [17]
LARP4 La-Related protein 4 La Ribonucleoprotein Domain Family Member 4 [17][99]
LBR LBR Lamin-B receptor [17]
LEMD3 LEMD3 Inner nuclear membrane protein Man1 [17]
LIN28A, LIN28B LIN28 Lin-28 Homolog A, B [100]
LMNA LMNA Prelamin-A/C [17]
LPP LPP Lipoma-preferred partner [17]
LSM14A RAP55 LSM14A, mRNA Processing Body Assembly Factor [17][101][102]
LSM14B LSM14B Protein LSM14 homolog B [17]
LSM3 LSM3 U6 snRNA-associated Sm-like protein LSm3 [17]
LUC7L LUC7L Putative RNA-binding protein Luc7-like 1 [17]
LUZP1 LUZP1 Leucine zipper protein 1 [17]
MACF1 MACF1 Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 [17]
MAEL MAEL Maelstrom Spermatogenic Transposon Silencer [103]
MAGEA4 MAGEA4 Melanoma-associated antigen 4 [17]
MAGED1 MAGED1 Melanoma-associated antigen D1 [17]
MAGED2 MAGED2 Melanoma-associated antigen D2 [17]
MAGOHB MAGOHB Protein mago nashi homolog 2 [17]
MAP1LC3A LC3-I Microtubule Associated Protein 1 Light Chain 3 Alpha [104][105]
MAP4 MAP4 Microtubule-associated protein 4 [17]
MAP4K4 MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4 [17]
MAPK8 JNK1 Mitogen-Activated Protein Kinase 8 [106]
MAPRE1 MAPRE1 Microtubule-associated protein RP/EB family member 1 [17]
MARS MARS Methionine—tRNA ligase, cytoplasmic [17]
MBNL1 MBNL1 Muscleblind Like Splicing Regulator 1 [44]
MCM4 MCM4 DNA replication licensing factor MCM4 [17]
MCM5 MCM5 DNA replication licensing factor MCM5 [17]
MCM7 MCM7 DNA replication licensing factor MCM7 [17]
METAP1 METAP1 Methionine aminopeptidase [17]
MEX3A MEX3A RNA-binding protein MEX3A [17]
MEX3B MEX3B Mex-3 RNA Binding Family Member B [107]
MEX3C MEX3C Mex-3 RNA Binding Family Member C [108]
MFAP1 MFAP1 Microfibrillar-associated protein 1 [17]
MKI67 MKI67 Antigen KI-67 [17]
MOV10 MOV-10 Mov10 RISC Complex RNA Helicase [17][19]
MSH6 MSH6 DNA mismatch repair protein Msh6 [17]
MSI1 Musashi-1 Musashi RNA Binding Protein 1 [102]
MSI2 MSI2 RNA-binding protein Musashi homolog 2 [17]
MTHFD1 MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic [17]
MTOR MTOR Mechanistic Target Of Rapamycin [54]
MYO6 MYO6 Unconventional myosin-VI [17]
NCOA3 SRC-3 Nuclear Receptor Coactivator 3 [109]
NEXN NEXN Nexilin [17]
NONO NonO Non-POU Domain Containing Octamer Binding [17][110]
NOP58 NOP58 Nucleolar protein 58 [17]
NOSIP NOSIP Nitric oxide synthase-interacting protein [17]
NRG2 Neuregulin-2 Neuregulin-2 [59]
NSUN2 NSUN2 tRNA (cytosine(34)-C(5))-methyltransferase [17]
NTMT1 NTMT1 N-terminal Xaa-Pro-Lys N-methyltransferase 1 [17]
NUDC NUDC Nuclear migration protein nudC [17]
NUFIP1 NUFIP NUFIP1, FMR1 Interacting Protein 1 [61]
NUFIP2 NUFIP2 Nuclear fragile X mental retardation-interacting protein 2 [17]
NUP205 NUP205 Nuclear pore complex protein Nup205 [17]
NUP98 NUP98 Nuclear pore complex protein Nup98-Nup96 [17]
OAS1 OAS 2′–5′ oligoadenylate synthetase  [47]
OGFOD1 TPA1 2-Oxoglutarate And Iron Dependent Oxygenase Domain Containing 1 [111]
OGG1 OGG1 8-Oxoguanine DNA Glycosylase [112]
PABPC1 PABP1 Poly(A) Binding Protein Cytoplasmic 1 [17][91][67][25][73][34][61][81]
PABPC4 PABPC4 Polyadenylate-binding protein 4 [17]
PAK4 PAK4 Serine/threonine-protein kinase PAK 4 [17]
PALLD Palladin Palladin [17]
PARG PARG/PARG99/PARG102 Poly(ADP-Ribose) Glycohydrolase [113]
PARP12 PARP-12/ARTD12 Poly(ADP-Ribose) Polymerase Family Member 12 [113]
PARP14 PARP-14 Poly(ADP-Ribose) Polymerase Family Member 14 [113]
PARP15 PARP-15 Poly(ADP-Ribose) Polymerase Family Member 15 [113]
PAWR PAWR PRKC apoptosis WT1 regulator protein [17]
PCBP2 PCBP2/HNRNPE2 Poly(RC) Binding Protein 2 [17][40]
PCNA PCNA Proliferating cell nuclear antigen [17]
PDCD6IP PDCD6IP Programmed cell death 6-interacting protein [17]
PDLIM1 PDLIM1 PDZ and LIM domain protein 1 [17]
PDLIM4 PDLIM4 PDZ and LIM domain protein 4 [17]
PDLIM5 PDLIM5 PDZ and LIM domain protein 5 [17]
PDS5B PDS5B Sister chromatid cohesion protein PDS5 homolog B [17]
PELO PELO Protein pelota homolog [17]
PFDN4 PFDN4 Prefoldin subunit 4 [17]
PFN1 Profilin 1 Profilin 1 [17][29]
PFN2 Profilin 2 Profilin 2 [17][29]
PGAM5 PGAM5 Serine/threonine-protein phosphatase PGAM5, mitochondrial [17]
PHB2 Prohibitin 2 Prohibitin 2 [12]
PHLDB2 PHLDB2 Pleckstrin homology-like domain family B member 2 [17]
PKP1 Plakophilin 1 Plakophilin 1 [77]
PKP2 Plakophilin 2 Plakophilin 2 [17]
PKP3 Plakophilin 3 Plakophilin 3 [77]
POLR2B POLR2B DNA-directed RNA polymerase [17]
POP7 RPP20 POP7 Homolog, Ribonuclease P/MRP Subunit [79]
PPME1 PPME1 Protein phosphatase methylesterase 1 [17]
PPP1R10 PPP1R10 Serine/threonine-protein phosphatase 1 regulatory subunit 10 [17]
PPP1R18 PPP1R18 Phostensin [17]
PPP2R1A PPP2R1A Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform [17]
PQBP1 PQBP-1 Polyglutamine Binding Protein 1 [114]
PRDX1 PRDX1 Peroxiredoxin-1 [17]
PRDX6 PRDX6 Peroxiredoxin-6 [17]
PRKCA PKC-ɑ Protein Kinase C Alpha [81]
PRKRA PACT Protein Activator Of Interferon Induced Protein Kinase EIF2AK2 [17][24]
PRMT1 PRMT1 Protein arginine N-methyltransferase 1 [17]
PRMT5 PRMT5 Protein arginine N-methyltransferase 5 [17]
PRRC2A PRRC2A Protein PRRC2A [17]
PRRC2C PRRC2C Protein PRRC2C [17]
PSMD2 PSMD2 26S proteasome non-ATPase regulatory subunit 2 [17]
PTBP3 PTBP3 Polypyrimidine tract-binding protein 3 [17]
PTGES3 PTGES3 Prostaglandin E synthase 3 [17]
PTK2 FAK Protein Tyrosine Kinase 2 [83]
PUM1 Pumilio-1 Pumilio homolog 1 [17]
PUM2 Pumilio-2 Pumilio RNA Binding Family Member 2 [34]
PURA PURA Transcriptional activator protein Pur-alpha [17]
PURB PURB Transcriptional activator protein Pur-beta [17]
PXDNL PMR1 Peroxidasin Like [115]
PYCR1 PYCR1 Pyrroline-5-carboxylate reductase [17]
RAB1A RAB1A Ras-related protein Rab-1A [17]
RACGAP1 RACGAP1 Rac GTPase-activating protein 1 [17]
RACK1 RACK1 Receptor For Activated C Kinase 1 [12][65][116]
RAD21 RAD21 Double-strand-break repair protein rad21 homolog [17]
RAN RAN RAN, Member RAS Oncogene Family [98]
RANBP1 RANBP1 Ran-specific GTPase-activating protein [17]
RBBP4 RBBP4 Histone-binding protein RBBP4 [17]
RBFOX1 RBFOX1 RNA binding protein fox-1 homolog [17]
RBM12B RBM12B RNA-binding protein 12B [17]
RBM26 RBM26 RNA-binding protein 26 [17]
RBM4 RBM4 RNA Binding Motif Protein 4 [117]
RBM42 RBM42 RNA Binding Motif Protein 42 [90]
RBMS1 RBMS1 RNA-binding motif, single-stranded-interacting protein 1 [17]
RBMS2 RBMS2 RNA-binding motif, single-stranded-interacting protein 2 [17]
RBPMS RBPMS RNA-binding protein with multiple splicing [118]
RC3H1 Roquin-1 Ring Finger And CCCH-Type Domains 1 [119]
RC3H2 MNAB Ring Finger And CCCH-Type Domains 2 [119]
RCC1 RCC1 Regulator of chromosome condensation [17]
RCC2 RCC2 Protein RCC2 [17]
RFC3 RFC3 Replication factor C subunit 3 [17]
RFC4 RFC4 Replication factor C subunit 4 [17]
RGPD3 RGPD3 RanBP2-like and GRIP domain-containing protein 3 [17]
RHOA RhoA Ras Homolog Family Member A [13]
RNASEL RNAse L Ribonuclease L [47]
RNF214 RNF214 RING finger protein 214 [17]
RNH1 RNH1 Ribonuclease inhibitor [17][23]
ROCK1 ROCK1 Rho Associated Coiled-Coil Containing Protein Kinase 1 [13]
RPS19 Ribosomal Protein S19 Ribosomal Protein S19 [57]
RPS3 40S Ribosomal Protein S3 40S Ribosomal Protein S3 [56][57]
RPS6 Ribosomal Protein S6 Ribosomal Protein S6 [56][2][61]
RPS6KA3 RSK2 Ribosomal Protein S6 Kinase A3 [120]
RPTOR RAPTOR Regulatory Associated Protein of mTOR Complex 1 [48][54]
RSL1D1 RSL1D1 Ribosomal L1 domain-containing protein 1 [17]
RTCB RTCB tRNA-splicing ligase RtcB homolog, formerly C22orf28 [17]
S100A7A S100A7A Protein S100-A7A [17]
S100A9 S100A9 Protein S100-A9 [17]
SAFB2 SAFB2 Scaffold attachment factor B2 [17]
SAMD4A SMAUG1 Sterile Alpha Motif Domain Containing 4A [121]
SEC24C SEC24C Protein transport protein Sec24C [17]
SERBP1 PAI-RBP1/SERBP1 SERPINE1 mRNA Binding Protein 1 [20][122][46]
SFN SFN 14-3-3 protein sigma [17]
SFPQ PSF Splicing Factor Proline And Glutamine Rich [17][110]
SFRS3 SFRS3 Serine/arginine-rich splicing factor 3 [17]
SIPA1L1 SIPA1L1 Signal-induced proliferation-associated 1-like protein 1 [17]
SIRT6 Sirtuin 6 Sirtuin 6 [123]
SMARCA1 SMARCA1/SNF2L1 Probable global transcription activator SNF2L1 [17]
SMC4 SMC4 Structural maintenance of chromosomes protein [17]
SMG1 SMG-1 SMG1, Nonsense Mediated mRNA Decay Associated PI3K Related Kinase [121][124]
SMN1 Survivial of Motor Neuron Survival Of Motor Neuron 1, Telomeric [79][125][126]
SMU1 SMU1 WD40 repeat-containing protein SMU1 [17]
SND1 Tudor-SN Staphylococcal Nuclease And Tudor Domain Containing 1 [18]
SNRPF SNRPF Small nuclear ribonucleoprotein F [17]
SNTB2 SNTB2 Beta-2-syntrophin [17]
SORBS1 SORBS1 Sorbin and SH3 domain-containing protein 1 [17]
SORBS3 Vinexin Sorbin And SH3 Domain Containing 3 [127]
SPAG5 Astrin Sperm Associated Antigen 5 [48]
SPATS2L SGNP Spermatogenesis Associated Serine Rich 2 Like [17][128]
SPECC1L SPECC1L Cytospin-A [17]
SRI SRI Sorcin [17]
SRP68 Signal Recognition Particle 68 Signal Recognition Particle 68 [19]
SRP9 SRP9 Signal Recognition Particle 9 [129]
SRRT SRRT Serrate RNA effector molecule homolog [17]
SRSF1 ASF/SF2 Serine And Arginine Rich Splicing Factor 1 [130]
SRSF3 SRp20 Serine And Arginine Rich Splicing Factor 3 [131][132]
SRSF4 SRSF4 Serine/arginine-rich splicing factor 4 [17]
SRSF7 9G8 Serine And Arginine Rich Splicing Factor 7 [20]
STAT1 STAT1 Signal transducer and activator of transcription 1-alpha/beta [17]
STAU1 Staufen 1 Staufen Double-Stranded RNA Binding Protein 1 [17][67][34][133]
STAU2 Staufen 2 Staufen Double-Stranded RNA Binding Protein 2 [17][67]
STIP1 STIP1/HOP Stress-induced-phosphoprotein 1 [17][24]
STRAP STRAP Serine-threonine kinase receptor-associated protein [17]
SUGP2 SUGP2 SURP and G-patch domain-containing protein 2 [17]
SUN1 SUN1 SUN domain-containing protein 1 [17]
SYCP3 SYCP3 Synaptonemal complex protein 3 [17]
SYNCRIP SYNCRIP Heterogeneous nuclear ribonucleoprotein Q [17][134]
TAF15 TAF15 TATA-Box Binding Protein Associated Factor 15 [17][71][72][75]
TARDBP TDP-43 TAR DNA Binding Protein [17][68][135][136][87][89][60]
TCEA1 TCEA1 Transcription elongation factor A protein 1 [17]
TCP1 TCP1 T-complex protein 1 subunit alpha [17]
TDRD3 Tudor Domain Containing 3 Tudor Domain Containing 3 [46][137][138]
TERT TERT Telomerase Reverse Transcriptase [139]
TIA1 TIA-1 TIA1 Cytotoxic Granule Associated RNA Binding Protein [2][17][20][26][34][42][53][74][80][86][91][125]
TIAL1 TIAR TIA1 Cytotoxic Granule Associated RNA Binding Protein Like 1 [17][34][61][67][68][91][125]
TMOD3 TMOD3 Tropomodulin-3 [17]
TNKS PARP-5a Tankyrase [113]
TNKS1BP1 TNKS1BP1 182 kDa tankyrase-1-binding protein [17]
TNPO1 Transportin-1 Transportin-1 [17][140]
TNPO2 Transportin-2 Transportin-2 [17]
TNRC6B TNRC6B Trinucleotide repeat-containing gene 6B protein [17]
TOMM34 TOMM34 Mitochondrial import receptor subunit TOM34 [17]
TOP3B Topoisomerase (DNA) III Beta Topoisomerase (DNA) III Beta [138]
TPM1 TPM1 Tropomyosin alpha-1 chain [17]
TPM2 TPM2 Tropomyosin beta chain [17]
TRAF2 TRAF2 TNF Receptor Associated Factor 2 [64]
TRDMT1 DNMT2 tRNA Aspartic Acid Methyltransferase 1 [141]
TRIM21 TRIM21 E3 ubiquitin-protein ligase TRIM21 [17]
TRIM25 TRIM25 E3 ubiquitin/ISG15 ligase TRIM25 [17]
TRIM56 TRIM56 E3 ubiquitin-protein ligase TRIM56 [17]
TRIP6 TRIP6 Thyroid receptor-interacting protein 6 [17]
TUBA1C TUBA1C Tubulin alpha-1C chain [17]
TUBA3C TUBA3C Tubulin alpha-3C/D chain [17]
TUBA4A TUBA4A Tubulin alpha-4A chain [17]
TUBB3 TUBB3 Tubulin beta-3 chain [17]
TUBB8 TUBB8 Tubulin beta-8 chain [17]
TUFM TUFM Elongation factor Tu, mitochondrial [17]
TXN TXN Thioredoxin [17]
U2AF1 U2AF1 Splicing factor U2AF 35 kDa subunit [17]
UBA1 UBA1 Ubiquitin-like modifier-activating enzyme 1 [17]
UBAP2 UBAP2 Ubiquitin-associated protein 2 [17]
UBAP2L UBAP2L Ubiquitin-associated protein 2-like [17]
UBB Ubiquitin Ubiquitin [69][80]
UPF1 UPF1 UPF1, RNA Helicase and ATPase [17][124]
UPF2 UPF2 UPF2, RNA Helicase and ATPase [124]
USP10 USP10 Ubiquitin Specific Peptidase 10 [17][116]
USP5 USP5 Ubiquitin carboxyl-terminal hydrolase 5 [17]
VASP VASP Vasodilator-stimulated phosphoprotein [17]
VCP VCP Valosin Containing Protein [17][142]
WDR62 WDR62 WD Repeat Domain 62 [106]
XRN1 XRN1 5'-3' Exoribonuclease 1 [14]
YARS YARS Tyrosine--tRNA ligase, cytoplasmic [17]
YBX1 YB-1 Y-Box Binding Protein 1 [17][20][19][44]
YBX3 YBX3 Y-box-binding protein 3 [17]
YES1 YES1 Tyrosine-protein kinase Yes [17]
YTHDF1 YTHDF1 YTH domain family protein 1 [17]
YTHDF2 YTHDF2 YTH domain family protein 2 [17]
YTHDF3 YTHDF3 YTH domain family protein 3 [17]
YWHAB 14-3-3 Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta [17][107]
YWHAH 14-3-3 14-3-3 protein eta [17]
YWHAQ 14-3-3 14-3-3 protein theta [17]
ZBP1 ZBP1 Z-DNA Binding Protein 1 [143][144]
ZC3H14 ZC3H14 Zinc finger CCCH domain-containing protein 14 [17]
ZC3H7A ZC3H7A Zinc finger CCCH domain-containing protein 7A [17]
ZC3H7B ZC3H7B Zinc finger CCCH domain-containing protein 7B [17]
ZC3HAV1 PARP-13.1/PARP-13.2/ARTD13 Zinc Finger CCCH-Type Containing, Antiviral 1 [17][113]
ZFP36 TTP/TIS11 ZFP36 Ring Finger Protein/Trisetrapolin [14][106][145][146][147]
ZNF638 ZNF638 Zinc finger protein 638 [17]

References

  1. Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV (March 2015). "Tudor Staphylococcal Nuclease Links Formation of Stress Granules and Processing Bodies with mRNA Catabolism in Arabidopsis". Plant Cell. 27: 926–43. PMC 4558657Freely accessible. PMID 25736060. doi:10.1105/tpc.114.134494.
  2. 1 2 3 4 5 Kayali F, Montie HL, Rafols JA, DeGracia DJ (2005). "Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules". Neuroscience. 134 (4): 1223–45. PMID 16055272. doi:10.1016/j.neuroscience.2005.05.047.
  3. Nover L, Scharf KD, Neumann D (Mar 1989). "Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs". Mol Cell Biol. 9 (3): 1298–308. PMC 362722Freely accessible. PMID 2725500.
  4. Paul J. Anderson, Brigham and Women's Hospital
  5. Forreiter C, Kirschner M, Nover L (Dec 1997). "Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo". Plant Cell. 9 (12): 2171–81. PMC 157066Freely accessible. PMID 9437862. doi:10.1105/tpc.9.12.2171.
  6. Löw D, Brändle K, Nover L, Forreiter C (Sep 2000). "Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo". Planta. 211 (4): 575–82. PMID 11030557. doi:10.1007/s004250000315.
  7. Stuger R, Ranostaj S, Materna T, Forreiter C (May 1999). "Messenger RNA-binding properties of nonpolysomal ribonucleoproteins from heat-stressed tomato cells". Plant Physiol. 120 (1): 23–32. PMC 59255Freely accessible. PMID 10318680. doi:10.1104/pp.120.1.23.
  8. Schmid HP, Akhayat O, Martins De Sa C, Puvion F, Koehler K, Scherrer K (Jan 1984). "The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins". EMBO J. 3 (1): 29–34. PMC 557293Freely accessible. PMID 6200323.
  9. Gilks N, Kedersha N, Ayodele M, et al. (Dec 2004). "Stress granule assembly is mediated by prion-like aggregation of TIA-1". Mol Biol Cell. 15 (12): 5383–98. PMC 532018Freely accessible. PMID 15371533. doi:10.1091/mbc.E04-08-0715.
  10. Ivanov PA, Chudinova EM, Nadezhdina ES (Nov 2003). "Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation". Exp. Cell Res. 290 (2): 227–33. PMID 14567982. doi:10.1016/S0014-4827(03)00290-8.
  11. Mahboubi, Hicham; Barisé, Ramla; Stochaj, Ursula (2015-07-01). "5′-AMP-activated protein kinase alpha regulates stress granule biogenesis". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1853 (7): 1725–1737. doi:10.1016/j.bbamcr.2015.03.015.
  12. 1 2 3 Ohn, Takbum; Kedersha, Nancy; Hickman, Tyler; Tisdale, Sarah; Anderson, Paul (2008). "A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly". Nature Cell Biology. 10 (10): 1224–1231. PMC 4318256Freely accessible. PMID 18794846. doi:10.1038/ncb1783.
  13. 1 2 3 4 Tsai, Nien-Pei; Wei, Li-Na (2010-04-01). "RhoA/ROCK1 signaling regulates stress granule formation and apoptosis". Cellular Signalling. 22 (4): 668–675. PMC 2815184Freely accessible. PMID 20004716. doi:10.1016/j.cellsig.2009.12.001.
  14. 1 2 3 4 5 6 7 8 Kedersha N, Stoecklin G, Ayodele M, et al. (Jun 2005). "Stress granules and processing bodies are dynamically linked sites of mRNP remodeling". J. Cell Biol. 169 (6): 871–84. PMC 2171635Freely accessible. PMID 15967811. doi:10.1083/jcb.200502088.
  15. 1 2 "Profilin 1, stress granules, and ALS pathogenesis". purl.stanford.edu. Retrieved 2017-07-26.
  16. 1 2 Aulas, Anaïs; Vande Velde, Christine (2015). "Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS?". Frontiers in Cellular Neuroscience. 9: 423. ISSN 1662-5102. PMC 4615823Freely accessible. PMID 26557057. doi:10.3389/fncel.2015.00423.
  17. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 Jain, Saumya; Wheeler, Joshua R.; Walters, Robert W.; Agrawal, Anurag; Barsic, Anthony; Parker, Roy (2016-01-28). "ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure". Cell. 164 (3): 487–498. ISSN 1097-4172. PMC 4733397Freely accessible. PMID 26777405. doi:10.1016/j.cell.2015.12.038.
  18. 1 2 Weissbach, Rebekka; Scadden, A. D. J. (March 2012). "Tudor-SN and ADAR1 are components of cytoplasmic stress granules". RNA (New York, N.Y.). 18 (3): 462–471. ISSN 1469-9001. PMC 3285934Freely accessible. PMID 22240577. doi:10.1261/rna.027656.111.
  19. 1 2 3 4 5 6 7 Gallois-Montbrun, Sarah; Kramer, Beatrice; Swanson, Chad M.; Byers, Helen; Lynham, Steven; Ward, Malcolm; Malim, Michael H. (March 2007). "Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules". Journal of Virology. 81 (5): 2165–2178. ISSN 0022-538X. PMC 1865933Freely accessible. PMID 17166910. doi:10.1128/JVI.02287-06.
  20. 1 2 3 4 5 6 7 8 9 Goodier, John L.; Zhang, Lili; Vetter, Melissa R.; Kazazian, Haig H. (September 2007). "LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex". Molecular and Cellular Biology. 27 (18): 6469–6483. ISSN 0270-7306. PMC 2099616Freely accessible. PMID 17562864. doi:10.1128/MCB.00332-07.
  21. Detzer, Anke; Engel, Christina; Wünsche, Winfried; Sczakiel, Georg (April 2011). "Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells". Nucleic Acids Research. 39 (7): 2727–2741. ISSN 1362-4962. PMC 3074141Freely accessible. PMID 21148147. doi:10.1093/nar/gkq1216.
  22. 1 2 3 4 Kolobova, Elena; Efimov, Andrey; Kaverina, Irina; Rishi, Arun K.; Schrader, John W.; Ham, Amy-Joan; Larocca, M. Cecilia; Goldenring, James R. (2009-02-01). "Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules". Experimental Cell Research. 315 (3): 542–555. ISSN 1090-2422. PMC 2788823Freely accessible. PMID 19073175. doi:10.1016/j.yexcr.2008.11.011.
  23. 1 2 Pizzo, Elio; Sarcinelli, Carmen; Sheng, Jinghao; Fusco, Sabato; Formiggini, Fabio; Netti, Paolo; Yu, Wenhao; D'Alessio, Giuseppe; Hu, Guo-Fu (2013-09-15). "Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival". Journal of Cell Science. 126 (Pt 18): 4308–4319. ISSN 1477-9137. PMC 3772394Freely accessible. PMID 23843625. doi:10.1242/jcs.134551.
  24. 1 2 3 4 Pare, Justin M.; Tahbaz, Nasser; López-Orozco, Joaquín; LaPointe, Paul; Lasko, Paul; Hobman, Tom C. (July 2009). "Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies". Molecular Biology of the Cell. 20 (14): 3273–3284. ISSN 1939-4586. PMC 2710822Freely accessible. PMID 19458189. doi:10.1091/mbc.E09-01-0082.
  25. 1 2 Ralser, Markus; Albrecht, Mario; Nonhoff, Ute; Lengauer, Thomas; Lehrach, Hans; Krobitsch, Sylvia (2005-02-11). "An integrative approach to gain insights into the cellular function of human ataxin-2". Journal of Molecular Biology. 346 (1): 203–214. ISSN 0022-2836. PMID 15663938. doi:10.1016/j.jmb.2004.11.024.
  26. 1 2 3 Nonhoff, Ute; Ralser, Markus; Welzel, Franziska; Piccini, Ilaria; Balzereit, Daniela; Yaspo, Marie-Laure; Lehrach, Hans; Krobitsch, Sylvia (April 2007). "Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules". Molecular Biology of the Cell. 18 (4): 1385–1396. ISSN 1059-1524. PMC 1838996Freely accessible. PMID 17392519. doi:10.1091/mbc.E06-12-1120.
  27. 1 2 Kaehler, Christian; Isensee, Jörg; Nonhoff, Ute; Terrey, Markus; Hucho, Tim; Lehrach, Hans; Krobitsch, Sylvia (2012). "Ataxin-2-like is a regulator of stress granules and processing bodies". PloS One. 7 (11): e50134. ISSN 1932-6203. PMC 3507954Freely accessible. PMID 23209657. doi:10.1371/journal.pone.0050134.
  28. Nihei, Yoshihiro; Ito, Daisuke; Suzuki, Norihiro (2012-11-30). "Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS)". The Journal of Biological Chemistry. 287 (49): 41310–41323. ISSN 1083-351X. PMC 3510829Freely accessible. PMID 23048034. doi:10.1074/jbc.M112.398099.
  29. 1 2 3 Figley, Matthew D.; Bieri, Gregor; Kolaitis, Regina-Maria; Taylor, J. Paul; Gitler, Aaron D. (2014-06-11). "Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 34 (24): 8083–8097. ISSN 1529-2401. PMC 4051967Freely accessible. PMID 24920614. doi:10.1523/JNEUROSCI.0543-14.2014.
  30. Decca, María B.; Carpio, Marcos A.; Bosc, Christophe; Galiano, Mauricio R.; Job, Didier; Andrieux, Annie; Hallak, Marta E. (2007-03-16). "Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules". The Journal of Biological Chemistry. 282 (11): 8237–8245. ISSN 0021-9258. PMC 2702537Freely accessible. PMID 17197444. doi:10.1074/jbc.M608559200.
  31. Solomon, Samuel; Xu, Yaoxian; Wang, Bin; David, Muriel D.; Schubert, Peter; Kennedy, Derek; Schrader, John W. (March 2007). "Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs". Molecular and Cellular Biology. 27 (6): 2324–2342. ISSN 0270-7306. PMC 1820512Freely accessible. PMID 17210633. doi:10.1128/MCB.02300-06.
  32. 1 2 Ratovitski, Tamara; Chighladze, Ekaterine; Arbez, Nicolas; Boronina, Tatiana; Herbrich, Shelley; Cole, Robert N.; Ross, Christopher A. (2012-05-15). "Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis". Cell Cycle (Georgetown, Tex.). 11 (10): 2006–2021. ISSN 1551-4005. PMC 3359124Freely accessible. PMID 22580459. doi:10.4161/cc.20423.
  33. 1 2 Baguet, Aurélie; Degot, Sébastien; Cougot, Nicolas; Bertrand, Edouard; Chenard, Marie-Pierre; Wendling, Corinne; Kessler, Pascal; Le Hir, Hervé; Rio, Marie-Christine (2007-08-15). "The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly". Journal of Cell Science. 120 (Pt 16): 2774–2784. ISSN 0021-9533. PMID 17652158. doi:10.1242/jcs.009225.
  34. 1 2 3 4 5 6 7 8 Vessey, John P.; Vaccani, Angelo; Xie, Yunli; Dahm, Ralf; Karra, Daniela; Kiebler, Michael A.; Macchi, Paolo (2006-06-14). "Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 26 (24): 6496–6508. ISSN 1529-2401. PMID 16775137. doi:10.1523/JNEUROSCI.0649-06.2006.
  35. Moujalled, Diane; James, Janine L.; Yang, Shu; Zhang, Katharine; Duncan, Clare; Moujalled, Donia M.; Parker, Sarah J.; Caragounis, Aphrodite; Lidgerwood, Grace (2015-03-15). "Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43". Human Molecular Genetics. 24 (6): 1655–1669. ISSN 1460-2083. PMID 25410660. doi:10.1093/hmg/ddu578.
  36. Fujimura, Ken; Kano, Fumi; Murata, Masayuki (2008-02-01). "Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment". Experimental Cell Research. 314 (3): 543–553. ISSN 0014-4827. PMID 18164289. doi:10.1016/j.yexcr.2007.10.024.
  37. Fathinajafabadi, Alihamze; Pérez-Jiménez, Eva; Riera, Marina; Knecht, Erwin; Gonzàlez-Duarte, Roser (2014). "CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules". PloS One. 9 (2): e87898. ISSN 1932-6203. PMC 3912138Freely accessible. PMID 24498393. doi:10.1371/journal.pone.0087898.
  38. De Leeuw, Frederic; Zhang, Tong; Wauquier, Corinne; Huez, Georges; Kruys, Véronique; Gueydan, Cyril (2007-12-10). "The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor". Experimental Cell Research. 313 (20): 4130–4144. ISSN 0014-4827. PMID 17967451. doi:10.1016/j.yexcr.2007.09.017.
  39. Rojas, Marta; Farr, George W.; Fernandez, Cesar F.; Lauden, Laura; McCormack, John C.; Wolin, Sandra L. (2012). "Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules". PloS One. 7 (12): e52824. ISSN 1932-6203. PMC 3528734Freely accessible. PMID 23285195. doi:10.1371/journal.pone.0052824.
  40. 1 2 Fujimura, Ken; Kano, Fumi; Murata, Masayuki (March 2008). "Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies". RNA (New York, N.Y.). 14 (3): 425–431. ISSN 1469-9001. PMC 2248264Freely accessible. PMID 18174314. doi:10.1261/rna.780708.
  41. 1 2 3 Wilczynska, A.; Aigueperse, C.; Kress, M.; Dautry, F.; Weil, D. (2005-03-01). "The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules". Journal of Cell Science. 118 (Pt 5): 981–992. ISSN 0021-9533. PMID 15731006. doi:10.1242/jcs.01692.
  42. 1 2 3 4 5 Kim, Jung-Eun; Ryu, Incheol; Kim, Woo Jae; Song, Ok-Kyu; Ryu, Jeongeun; Kwon, Mi Yi; Kim, Joon Hyun; Jang, Sung Key (January 2008). "Proline-rich transcript in brain protein induces stress granule formation". Molecular and Cellular Biology. 28 (2): 803–813. ISSN 1098-5549. PMC 2223406Freely accessible. PMID 17984221. doi:10.1128/MCB.01226-07.
  43. Kim, Byunghyuk; Cooke, Howard J.; Rhee, Kunsoo (February 2012). "DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress". Development (Cambridge, England). 139 (3): 568–578. ISSN 1477-9129. PMID 22223682. doi:10.1242/dev.075846.
  44. 1 2 3 Onishi, Hayato; Kino, Yoshihiro; Morita, Tomoko; Futai, Eugene; Sasagawa, Noboru; Ishiura, Shoichi (July 2008). "MBNL1 associates with YB-1 in cytoplasmic stress granules". Journal of Neuroscience Research. 86 (9): 1994–2002. ISSN 1097-4547. PMID 18335541. doi:10.1002/jnr.21655.
  45. Yasuda-Inoue, Mariko; Kuroki, Misao; Ariumi, Yasuo (2013-11-22). "DDX3 RNA helicase is required for HIV-1 Tat function". Biochemical and Biophysical Research Communications. 441 (3): 607–611. ISSN 1090-2104. PMID 24183723. doi:10.1016/j.bbrc.2013.10.107.
  46. 1 2 3 Goulet, Isabelle; Boisvenue, Sophie; Mokas, Sophie; Mazroui, Rachid; Côté, Jocelyn (2008-10-01). "TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules". Human Molecular Genetics. 17 (19): 3055–3074. ISSN 1460-2083. PMC 2536506Freely accessible. PMID 18632687. doi:10.1093/hmg/ddn203.
  47. 1 2 3 4 5 6 Onomoto, Koji; Jogi, Michihiko; Yoo, Ji-Seung; Narita, Ryo; Morimoto, Shiho; Takemura, Azumi; Sambhara, Suryaprakash; Kawaguchi, Atushi; Osari, Suguru (2012). "Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity". PloS One. 7 (8): e43031. ISSN 1932-6203. PMC 3418241Freely accessible. PMID 22912779. doi:10.1371/journal.pone.0043031.
  48. 1 2 3 Thedieck, Kathrin; Holzwarth, Birgit; Prentzell, Mirja Tamara; Boehlke, Christopher; Kläsener, Kathrin; Ruf, Stefanie; Sonntag, Annika Gwendolin; Maerz, Lars; Grellscheid, Sushma-Nagaraja (2013-08-15). "Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells". Cell. 154 (4): 859–874. ISSN 1097-4172. PMID 23953116. doi:10.1016/j.cell.2013.07.031.
  49. Salleron, Lisa; Magistrelli, Giovanni; Mary, Camille; Fischer, Nicolas; Bairoch, Amos; Lane, Lydie (December 2014). "DERA is the human deoxyribose phosphate aldolase and is involved in stress response". Biochimica Et Biophysica Acta. 1843 (12): 2913–2925. ISSN 0006-3002. PMID 25229427. doi:10.1016/j.bbamcr.2014.09.007.
  50. Chalupníková, Katerina; Lattmann, Simon; Selak, Nives; Iwamoto, Fumiko; Fujiki, Yukio; Nagamine, Yoshikuni (2008-12-12). "Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain". The Journal of Biological Chemistry. 283 (50): 35186–35198. ISSN 0021-9258. PMC 3259895Freely accessible. PMID 18854321. doi:10.1074/jbc.M804857200.
  51. Ogawa, Fumiaki; Kasai, Mana; Akiyama, Tetsu (2005-12-16). "A functional link between Disrupted-In-Schizophrenia 1 and the eukaryotic translation initiation factor 3". Biochemical and Biophysical Research Communications. 338 (2): 771–776. ISSN 0006-291X. PMID 16243297. doi:10.1016/j.bbrc.2005.10.013.
  52. 1 2 3 4 Loschi, Mariela; Leishman, Claudia C.; Berardone, Neda; Boccaccio, Graciela L. (2009-11-01). "Dynein and kinesin regulate stress-granule and P-body dynamics". Journal of Cell Science. 122 (Pt 21): 3973–3982. ISSN 1477-9137. PMC 2773196Freely accessible. PMID 19825938. doi:10.1242/jcs.051383.
  53. 1 2 3 Tsai, N.-P.; Tsui, Y.-C.; Wei, L.-N. (2009-03-17). "Dynein motor contributes to stress granule dynamics in primary neurons". Neuroscience. 159 (2): 647–656. ISSN 0306-4522. PMC 2650738Freely accessible. PMID 19171178. doi:10.1016/j.neuroscience.2008.12.053.
  54. 1 2 3 Wippich, Frank; Bodenmiller, Bernd; Trajkovska, Maria Gustafsson; Wanka, Stefanie; Aebersold, Ruedi; Pelkmans, Lucas (2013-02-14). "Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling". Cell. 152 (4): 791–805. ISSN 1097-4172. PMID 23415227. doi:10.1016/j.cell.2013.01.033.
  55. Shigunov, Patrícia; Sotelo-Silveira, Jose; Stimamiglio, Marco Augusto; Kuligovski, Crisciele; Irigoín, Florencia; Badano, Jose L.; Munroe, David; Correa, Alejandro; Dallagiovanna, Bruno (2014-07-03). "Ribonomic analysis of human DZIP1 reveals its involvement in ribonucleoprotein complexes and stress granules". BMC Molecular Biology. 15: 12. ISSN 1471-2199. PMC 4091656Freely accessible. PMID 24993635. doi:10.1186/1471-2199-15-12.
  56. 1 2 3 4 5 6 Kimball, Scot R.; Horetsky, Rick L.; Ron, David; Jefferson, Leonard S.; Harding, Heather P. (February 2003). "Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes". American Journal of Physiology. Cell Physiology. 284 (2): C273–284. ISSN 0363-6143. PMID 12388085. doi:10.1152/ajpcell.00314.2002.
  57. 1 2 3 4 5 6 Kedersha, Nancy; Chen, Samantha; Gilks, Natalie; Li, Wei; Miller, Ira J.; Stahl, Joachim; Anderson, Paul (January 2002). "Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules". Molecular Biology of the Cell. 13 (1): 195–210. ISSN 1059-1524. PMC 65082Freely accessible. PMID 11809833. doi:10.1091/mbc.01-05-0221.
  58. 1 2 Li, Chi Ho; Ohn, Takbum; Ivanov, Pavel; Tisdale, Sarah; Anderson, Paul (2010-04-01). "eIF5A promotes translation elongation, polysome disassembly and stress granule assembly". PloS One. 5 (4): e9942. ISSN 1932-6203. PMC 2848580Freely accessible. PMID 20376341. doi:10.1371/journal.pone.0009942.
  59. 1 2 Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum (August 2016). "Identification of Neuregulin-2 as a novel stress granule component". BMB reports. 49 (8): 449–454. ISSN 1976-670X. PMC 5070733Freely accessible. PMID 27345716. doi:10.5483/BMBRep.2016.49.8.090.
  60. 1 2 Dammer, Eric B.; Fallini, Claudia; Gozal, Yair M.; Duong, Duc M.; Rossoll, Wilfried; Xu, Ping; Lah, James J.; Levey, Allan I.; Peng, Junmin (2012). "Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination". PloS One. 7 (6): e38658. ISSN 1932-6203. PMC 3380899Freely accessible. PMID 22761693. doi:10.1371/journal.pone.0038658.
  61. 1 2 3 4 5 6 7 8 9 10 Kim, Soong Ho; Dong, Willie K.; Weiler, Ivan Jeanne; Greenough, William T. (2006-03-01). "Fragile X mental retardation protein shifts between polyribosomes and stress granules after neuronal injury by arsenite stress or in vivo hippocampal electrode insertion". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 26 (9): 2413–2418. ISSN 1529-2401. PMID 16510718. doi:10.1523/JNEUROSCI.3680-05.2006.
  62. 1 2 3 4 Mazroui, Rachid; Di Marco, Sergio; Kaufman, Randal J.; Gallouzi, Imed-Eddine (July 2007). "Inhibition of the ubiquitin-proteasome system induces stress granule formation". Molecular Biology of the Cell. 18 (7): 2603–2618. ISSN 1059-1524. PMC 1924830Freely accessible. PMID 17475769. doi:10.1091/mbc.E06-12-1079.
  63. 1 2 Battle, Daniel J.; Kasim, Mumtaz; Wang, Jin; Dreyfuss, Gideon (2007-09-21). "SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate". The Journal of Biological Chemistry. 282 (38): 27953–27959. ISSN 0021-9258. PMID 17640873. doi:10.1074/jbc.M702317200.
  64. 1 2 Kim, Woo Jae; Back, Sung Hoon; Kim, Vit; Ryu, Incheol; Jang, Sung Key (March 2005). "Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions". Molecular and Cellular Biology. 25 (6): 2450–2462. ISSN 0270-7306. PMC 1061607Freely accessible. PMID 15743837. doi:10.1128/MCB.25.6.2450-2462.2005.
  65. 1 2 Arimoto, Kyoko; Fukuda, Hiroyuki; Imajoh-Ohmi, Shinobu; Saito, Haruo; Takekawa, Mutsuhiro (November 2008). "Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways". Nature Cell Biology. 10 (11): 1324–1332. ISSN 1476-4679. PMID 18836437. doi:10.1038/ncb1791.
  66. Gallouzi, I. E.; Brennan, C. M.; Stenberg, M. G.; Swanson, M. S.; Eversole, A.; Maizels, N.; Steitz, J. A. (2000-03-28). "HuR binding to cytoplasmic mRNA is perturbed by heat shock". Proceedings of the National Academy of Sciences of the United States of America. 97 (7): 3073–3078. ISSN 0027-8424. PMC 16194Freely accessible. PMID 10737787.
  67. 1 2 3 4 5 Thomas, María G.; Martinez Tosar, Leandro J.; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L. (January 2005). "Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes". Molecular Biology of the Cell. 16 (1): 405–420. ISSN 1059-1524. PMC 539183Freely accessible. PMID 15525674. doi:10.1091/mbc.E04-06-0516.
  68. 1 2 3 Colombrita, Claudia; Zennaro, Eleonora; Fallini, Claudia; Weber, Markus; Sommacal, Andreas; Buratti, Emanuele; Silani, Vincenzo; Ratti, Antonia (November 2009). "TDP-43 is recruited to stress granules in conditions of oxidative insult". Journal of Neurochemistry. 111 (4): 1051–1061. ISSN 1471-4159. PMID 19765185. doi:10.1111/j.1471-4159.2009.06383.x.
  69. 1 2 3 Meyerowitz, Jodi; Parker, Sarah J.; Vella, Laura J.; Ng, Dominic Ch; Price, Katherine A.; Liddell, Jeffrey R.; Caragounis, Aphrodite; Li, Qiao-Xin; Masters, Colin L. (2011-08-08). "C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress". Molecular Neurodegeneration. 6: 57. ISSN 1750-1326. PMC 3162576Freely accessible. PMID 21819629. doi:10.1186/1750-1326-6-57.
  70. Burry, Richard W.; Smith, Catherine L. (October 2006). "HuD distribution changes in response to heat shock but not neurotrophic stimulation". The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 54 (10): 1129–1138. ISSN 0022-1554. PMC 3957809Freely accessible. PMID 16801526. doi:10.1369/jhc.6A6979.2006.
  71. 1 2 3 Andersson, Mattias K.; Ståhlberg, Anders; Arvidsson, Yvonne; Olofsson, Anita; Semb, Henrik; Stenman, Göran; Nilsson, Ola; Aman, Pierre (2008-07-11). "The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response". BMC Cell Biology. 9: 37. ISSN 1471-2121. PMC 2478660Freely accessible. PMID 18620564. doi:10.1186/1471-2121-9-37.
  72. 1 2 3 Neumann, Manuela; Bentmann, Eva; Dormann, Dorothee; Jawaid, Ali; DeJesus-Hernandez, Mariely; Ansorge, Olaf; Roeber, Sigrun; Kretzschmar, Hans A.; Munoz, David G. (September 2011). "FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations". Brain: A Journal of Neurology. 134 (Pt 9): 2595–2609. ISSN 1460-2156. PMC 3170539Freely accessible. PMID 21856723. doi:10.1093/brain/awr201.
  73. 1 2 3 4 Mazroui, Rachid; Huot, Marc-Etienne; Tremblay, Sandra; Filion, Christine; Labelle, Yves; Khandjian, Edouard W. (2002-11-15). "Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression". Human Molecular Genetics. 11 (24): 3007–3017. ISSN 0964-6906. PMID 12417522.
  74. 1 2 Dolzhanskaya, Natalia; Merz, George; Denman, Robert B. (2006-09-27). "Oxidative stress reveals heterogeneity of FMRP granules in PC12 cell neurites". Brain Research. 1112 (1): 56–64. ISSN 0006-8993. PMID 16919243. doi:10.1016/j.brainres.2006.07.026.
  75. 1 2 Blechingberg, Jenny; Luo, Yonglun; Bolund, Lars; Damgaard, Christian Kroun; Nielsen, Anders Lade (2012). "Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions". PloS One. 7 (9): e46251. ISSN 1932-6203. PMC 3457980Freely accessible. PMID 23049996. doi:10.1371/journal.pone.0046251.
  76. Sama, Reddy Ranjith K.; Ward, Catherine L.; Kaushansky, Laura J.; Lemay, Nathan; Ishigaki, Shinsuke; Urano, Fumihiko; Bosco, Daryl A. (November 2013). "FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress". Journal of Cellular Physiology. 228 (11): 2222–2231. ISSN 1097-4652. PMC 4000275Freely accessible. PMID 23625794. doi:10.1002/jcp.24395.
  77. 1 2 3 4 Hofmann, Ilse; Casella, Marialuisa; Schnölzer, Martina; Schlechter, Tanja; Spring, Herbert; Franke, Werner W. (March 2006). "Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules". Molecular Biology of the Cell. 17 (3): 1388–1398. ISSN 1059-1524. PMC 1382326Freely accessible. PMID 16407409. doi:10.1091/mbc.E05-08-0708.
  78. Tourrière, Helene; Chebli, Karim; Zekri, Latifa; Courselaud, Brice; Blanchard, Jean Marie; Bertrand, Edouard; Tazi, Jamal (2003-03-17). "The RasGAP-associated endoribonuclease G3BP assembles stress granules". The Journal of Cell Biology. 160 (6): 823–831. ISSN 0021-9525. PMC 2173781Freely accessible. PMID 12642610. doi:10.1083/jcb.200212128.
  79. 1 2 3 Hua, Yimin; Zhou, Jianhua (2004-01-30). "Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress". Biochemical and Biophysical Research Communications. 314 (1): 268–276. ISSN 0006-291X. PMID 14715275.
  80. 1 2 3 4 Kwon, Sohee; Zhang, Yu; Matthias, Patrick (2007-12-15). "The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response". Genes & Development. 21 (24): 3381–3394. ISSN 0890-9369. PMC 2113037Freely accessible. PMID 18079183. doi:10.1101/gad.461107.
  81. 1 2 3 4 Kobayashi, Tamae; Winslow, Sofia; Sunesson, Lovisa; Hellman, Ulf; Larsson, Christer (2012). "PKCα binds G3BP2 and regulates stress granule formation following cellular stress". PloS One. 7 (4): e35820. ISSN 1932-6203. PMC 3335008Freely accessible. PMID 22536444. doi:10.1371/journal.pone.0035820.
  82. Matsuki, Hideaki; Takahashi, Masahiko; Higuchi, Masaya; Makokha, Grace N.; Oie, Masayasu; Fujii, Masahiro (February 2013). "Both G3BP1 and G3BP2 contribute to stress granule formation". Genes to Cells: Devoted to Molecular & Cellular Mechanisms. 18 (2): 135–146. ISSN 1365-2443. PMID 23279204. doi:10.1111/gtc.12023.
  83. 1 2 Tsai, Nien-Pei; Ho, Ping-Chih; Wei, Li-Na (2008-03-05). "Regulation of stress granule dynamics by Grb7 and FAK signalling pathway". The EMBO journal. 27 (5): 715–726. ISSN 1460-2075. PMC 2265756Freely accessible. PMID 18273060. doi:10.1038/emboj.2008.19.
  84. Grousl, Tomas; Ivanov, Pavel; Malcova, Ivana; Pompach, Petr; Frydlova, Ivana; Slaba, Renata; Senohrabkova, Lenka; Novakova, Lenka; Hasek, Jiri (2013). "Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae". PloS One. 8 (2): e57083. ISSN 1932-6203. PMC 3581570Freely accessible. PMID 23451152. doi:10.1371/journal.pone.0057083.
  85. Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Saito, Angela; Morello, Luis Gustavo; Zanchin, Nilson Ivo T.; Kobarg, Jörg (2011-08-19). "Evidence for the association of the human regulatory protein Ki-1/57 with the translational machinery". FEBS letters. 585 (16): 2556–2560. ISSN 1873-3468. PMID 21771594. doi:10.1016/j.febslet.2011.07.010.
  86. 1 2 Guil, Sonia; Long, Jennifer C.; Cáceres, Javier F. (August 2006). "hnRNP A1 relocalization to the stress granules reflects a role in the stress response". Molecular and Cellular Biology. 26 (15): 5744–5758. ISSN 0270-7306. PMC 1592774Freely accessible. PMID 16847328. doi:10.1128/MCB.00224-06.
  87. 1 2 Dewey, Colleen M.; Cenik, Basar; Sephton, Chantelle F.; Dries, Daniel R.; Mayer, Paul; Good, Shannon K.; Johnson, Brett A.; Herz, Joachim; Yu, Gang (March 2011). "TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor". Molecular and Cellular Biology. 31 (5): 1098–1108. ISSN 1098-5549. PMC 3067820Freely accessible. PMID 21173160. doi:10.1128/MCB.01279-10.
  88. Papadopoulou, Christina; Ganou, Vassiliki; Patrinou-Georgoula, Meropi; Guialis, Apostolia (January 2013). "HuR-hnRNP interactions and the effect of cellular stress". Molecular and Cellular Biochemistry. 372 (1-2): 137–147. ISSN 1573-4919. PMID 22983828. doi:10.1007/s11010-012-1454-0.
  89. 1 2 McDonald, Karli K.; Aulas, Anaïs; Destroismaisons, Laurie; Pickles, Sarah; Beleac, Evghenia; Camu, William; Rouleau, Guy A.; Vande Velde, Christine (2011-04-01). "TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1". Human Molecular Genetics. 20 (7): 1400–1410. ISSN 1460-2083. PMID 21257637. doi:10.1093/hmg/ddr021.
  90. 1 2 Fukuda, Toshiyuki; Naiki, Takahiro; Saito, Marie; Irie, Kenji (February 2009). "hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions". Genes to Cells: Devoted to Molecular & Cellular Mechanisms. 14 (2): 113–128. ISSN 1365-2443. PMID 19170760. doi:10.1111/j.1365-2443.2008.01256.x.
  91. 1 2 3 4 Kedersha, N. L.; Gupta, M.; Li, W.; Miller, I.; Anderson, P. (1999-12-27). "RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules". The Journal of Cell Biology. 147 (7): 1431–1442. ISSN 0021-9525. PMC 2174242Freely accessible. PMID 10613902.
  92. Wen, Xi; Huang, Xiaofeng; Mok, Bobo Wing-Yee; Chen, Yixin; Zheng, Min; Lau, Siu-Ying; Wang, Pui; Song, Wenjun; Jin, Dong-Yan (2014-04-15). "NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells". Journal of Immunology (Baltimore, Md.: 1950). 192 (8): 3753–3764. ISSN 1550-6606. PMID 24623135. doi:10.4049/jimmunol.1302813.
  93. Brehm, Maria A.; Schenk, Tobias M. H.; Zhou, Xuefei; Fanick, Werner; Lin, Hongying; Windhorst, Sabine; Nalaskowski, Marcus M.; Kobras, Mario; Shears, Stephen B. (2007-12-15). "Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase". The Biochemical Journal. 408 (3): 335–345. ISSN 1470-8728. PMC 2267366Freely accessible. PMID 17705785. doi:10.1042/BJ20070382.
  94. Piotrowska, Joanna; Hansen, Spencer J.; Park, Nogi; Jamka, Katarzyna; Sarnow, Peter; Gustin, Kurt E. (April 2010). "Stable formation of compositionally unique stress granules in virus-infected cells". Journal of Virology. 84 (7): 3654–3665. ISSN 1098-5514. PMC 2838110Freely accessible. PMID 20106928. doi:10.1128/JVI.01320-09.
  95. Henao-Mejia, Jorge; He, Johnny J. (2009-11-15). "Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1". Experimental Cell Research. 315 (19): 3381–3395. ISSN 1090-2422. PMC 2783656Freely accessible. PMID 19615357. doi:10.1016/j.yexcr.2009.07.011.
  96. Rothé, Françoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Véronique (2006-04-28). "Identification of FUSE-binding proteins as interacting partners of TIA proteins". Biochemical and Biophysical Research Communications. 343 (1): 57–68. ISSN 0006-291X. PMID 16527256. doi:10.1016/j.bbrc.2006.02.112.
  97. 1 2 3 4 Mahboubi, Hicham; Seganathy, Evangeline; Kong, Dekun; Stochaj, Ursula (2013). "Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport". PloS One. 8 (6): e68356. ISSN 1932-6203. PMC 3694919Freely accessible. PMID 23826389. doi:10.1371/journal.pone.0068356.
  98. 1 2 Fujimura, Ken; Suzuki, Tomonori; Yasuda, Yoshinari; Murata, Masayuki; Katahira, Jun; Yoneda, Yoshihiro (July 2010). "Identification of importin alpha1 as a novel constituent of RNA stress granules". Biochimica Et Biophysica Acta. 1803 (7): 865–871. ISSN 0006-3002. PMID 20362631. doi:10.1016/j.bbamcr.2010.03.020.
  99. Yang, Ruiqing; Gaidamakov, Sergei A.; Xie, Jingwei; Lee, Joowon; Martino, Luigi; Kozlov, Guennadi; Crawford, Amanda K.; Russo, Amy N.; Conte, Maria R. (February 2011). "La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability". Molecular and Cellular Biology. 31 (3): 542–556. ISSN 1098-5549. PMC 3028612Freely accessible. PMID 21098120. doi:10.1128/MCB.01162-10.
  100. Balzer, Erica; Moss, Eric G. (January 2007). "Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules". RNA biology. 4 (1): 16–25. ISSN 1555-8584. PMID 17617744.
  101. Yang, Wei-Hong; Yu, Jiang Hong; Gulick, Tod; Bloch, Kenneth D.; Bloch, Donald B. (April 2006). "RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules". RNA (New York, N.Y.). 12 (4): 547–554. ISSN 1355-8382. PMC 1421083Freely accessible. PMID 16484376. doi:10.1261/rna.2302706.
  102. 1 2 Kawahara, Hironori; Imai, Takao; Imataka, Hiroaki; Tsujimoto, Masafumi; Matsumoto, Ken; Okano, Hideyuki (2008-05-19). "Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP". The Journal of Cell Biology. 181 (4): 639–653. ISSN 1540-8140. PMC 2386104Freely accessible. PMID 18490513. doi:10.1083/jcb.200708004.
  103. Yuan, Liqin; Xiao, Yuzhong; Zhou, Qiuzhi; Yuan, Dongmei; Wu, Baiping; Chen, Gannong; Zhou, Jianlin (January 2014). "Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells". Oncology Reports. 31 (1): 342–350. ISSN 1791-2431. PMID 24189637. doi:10.3892/or.2013.2836.
  104. Seguin, S. J.; Morelli, F. F.; Vinet, J.; Amore, D.; De Biasi, S.; Poletti, A.; Rubinsztein, D. C.; Carra, S. (December 2014). "Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly". Cell Death and Differentiation. 21 (12): 1838–1851. ISSN 1476-5403. PMC 4227144Freely accessible. PMID 25034784. doi:10.1038/cdd.2014.103.
  105. Ryu, Hyun-Hee; Jun, Mi-Hee; Min, Kyung-Jin; Jang, Deok-Jin; Lee, Yong-Seok; Kim, Hyong Kyu; Lee, Jin-A. (December 2014). "Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons". Neurobiology of Aging. 35 (12): 2822–2831. ISSN 1558-1497. PMID 25216585. doi:10.1016/j.neurobiolaging.2014.07.026.
  106. 1 2 3 Wasserman, Tanya; Katsenelson, Ksenya; Daniliuc, Sharon; Hasin, Tal; Choder, Mordechay; Aronheim, Ami (2010-01-01). "A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation". Molecular Biology of the Cell. 21 (1): 117–130. ISSN 1939-4586. PMC 2801705Freely accessible. PMID 19910486. doi:10.1091/mbc.E09-06-0512.
  107. 1 2 Courchet, Julien; Buchet-Poyau, Karine; Potemski, Auriane; Brès, Aurélie; Jariel-Encontre, Isabelle; Billaud, Marc (2008-11-14). "Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules". The Journal of Biological Chemistry. 283 (46): 32131–32142. ISSN 0021-9258. PMID 18779327. doi:10.1074/jbc.M802927200.
  108. Kuniyoshi, Kanako; Takeuchi, Osamu; Pandey, Surya; Satoh, Takashi; Iwasaki, Hidenori; Akira, Shizuo; Kawai, Taro (2014-04-15). "Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity". Proceedings of the National Academy of Sciences of the United States of America. 111 (15): 5646–5651. ISSN 1091-6490. PMC 3992669Freely accessible. PMID 24706898. doi:10.1073/pnas.1401674111.
  109. Yu, Chundong; York, Brian; Wang, Shu; Feng, Qin; Xu, Jianming; O'Malley, Bert W. (2007-03-09). "An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response". Molecular Cell. 25 (5): 765–778. ISSN 1097-2765. PMC 1864954Freely accessible. PMID 17349961. doi:10.1016/j.molcel.2007.01.025.
  110. 1 2 Furukawa, Mari T.; Sakamoto, Hiroshi; Inoue, Kunio (April 2015). "Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells". Genes to Cells: Devoted to Molecular & Cellular Mechanisms. 20 (4): 257–266. ISSN 1365-2443. PMID 25651939. doi:10.1111/gtc.12224.
  111. Wehner, Karen A.; Schütz, Sylvia; Sarnow, Peter (April 2010). "OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress". Molecular and Cellular Biology. 30 (8): 2006–2016. ISSN 1098-5549. PMC 2849474Freely accessible. PMID 20154146. doi:10.1128/MCB.01350-09.
  112. Bravard, Anne; Campalans, Anna; Vacher, Monique; Gouget, Barbara; Levalois, Céline; Chevillard, Sylvie; Radicella, J. Pablo (2010-03-01). "Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium". Mutation Research. 685 (1-2): 61–69. ISSN 0027-5107. PMID 19800894. doi:10.1016/j.mrfmmm.2009.09.013.
  113. 1 2 3 4 5 6 Leung, Anthony K. L.; Vyas, Sejal; Rood, Jennifer E.; Bhutkar, Arjun; Sharp, Phillip A.; Chang, Paul (2011-05-20). "Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm". Molecular Cell. 42 (4): 489–499. ISSN 1097-4164. PMC 3898460Freely accessible. PMID 21596313. doi:10.1016/j.molcel.2011.04.015.
  114. Kunde, S. A.; Musante, L.; Grimme, A.; Fischer, U.; Müller, E.; Wanker, E. E.; Kalscheuer, V. M. (2011-12-15). "The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules". Human Molecular Genetics. 20 (24): 4916–4931. ISSN 1460-2083. PMID 21933836. doi:10.1093/hmg/ddr430.
  115. Yang, Feng; Peng, Yong; Murray, Elizabeth L.; Otsuka, Yuichi; Kedersha, Nancy; Schoenberg, Daniel R. (December 2006). "Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1". Molecular and Cellular Biology. 26 (23): 8803–8813. ISSN 0270-7306. PMC 1636822Freely accessible. PMID 16982678. doi:10.1128/MCB.00090-06.
  116. 1 2 Takahashi, Masahiko; Higuchi, Masaya; Matsuki, Hideaki; Yoshita, Manami; Ohsawa, Toshiaki; Oie, Masayasu; Fujii, Masahiro (February 2013). "Stress granules inhibit apoptosis by reducing reactive oxygen species production". Molecular and Cellular Biology. 33 (4): 815–829. ISSN 1098-5549. PMC 3571346Freely accessible. PMID 23230274. doi:10.1128/MCB.00763-12.
  117. Lin, Jung-Chun; Hsu, Min; Tarn, Woan-Yuh (2007-02-13). "Cell stress modulates the function of splicing regulatory protein RBM4 in translation control". Proceedings of the National Academy of Sciences of the United States of America. 104 (7): 2235–2240. ISSN 0027-8424. PMC 1893002Freely accessible. PMID 17284590. doi:10.1073/pnas.0611015104.
  118. Farazi, Thalia A.; Leonhardt, Carl S.; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E. A.; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol (July 2014). "Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets". RNA (New York, N.Y.). 20 (7): 1090–1102. ISSN 1469-9001. PMC 4114688Freely accessible. PMID 24860013. doi:10.1261/rna.045005.114.
  119. 1 2 Athanasopoulos, Vicki; Barker, Andrew; Yu, Di; Tan, Andy H.-M.; Srivastava, Monika; Contreras, Nelida; Wang, Jianbin; Lam, Kong-Peng; Brown, Simon H. J. (May 2010). "The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs". The FEBS journal. 277 (9): 2109–2127. ISSN 1742-4658. PMID 20412057. doi:10.1111/j.1742-4658.2010.07628.x.
  120. Eisinger-Mathason, T. S. Karin; Andrade, Josefa; Groehler, Angela L.; Clark, David E.; Muratore-Schroeder, Tara L.; Pasic, Lejla; Smith, Jeffrey A.; Shabanowitz, Jeffrey; Hunt, Donald F. (2008-09-05). "Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival". Molecular Cell. 31 (5): 722–736. ISSN 1097-4164. PMC 2654589Freely accessible. PMID 18775331. doi:10.1016/j.molcel.2008.06.025.
  121. 1 2 Baez, María V.; Boccaccio, Graciela L. (2005-12-30). "Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules". The Journal of Biological Chemistry. 280 (52): 43131–43140. ISSN 0021-9258. PMID 16221671. doi:10.1074/jbc.M508374200.
  122. Lee, Yu-Jen; Wei, Hung-Ming; Chen, Ling-Yun; Li, Chuan (January 2014). "Localization of SERBP1 in stress granules and nucleoli". The FEBS journal. 281 (1): 352–364. ISSN 1742-4658. PMID 24205981. doi:10.1111/febs.12606.
  123. Jedrusik-Bode, Monika; Studencka, Maja; Smolka, Christian; Baumann, Tobias; Schmidt, Henning; Kampf, Jan; Paap, Franziska; Martin, Sophie; Tazi, Jamal (2013-11-15). "The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals". Journal of Cell Science. 126 (Pt 22): 5166–5177. ISSN 1477-9137. PMID 24013546. doi:10.1242/jcs.130708.
  124. 1 2 3 Brown, James A. L.; Roberts, Tara L.; Richards, Renee; Woods, Rick; Birrell, Geoff; Lim, Y. C.; Ohno, Shigeo; Yamashita, Akio; Abraham, Robert T. (November 2011). "A novel role for hSMG-1 in stress granule formation". Molecular and Cellular Biology. 31 (22): 4417–4429. ISSN 1098-5549. PMC 3209244Freely accessible. PMID 21911475. doi:10.1128/MCB.05987-11.
  125. 1 2 3 Hua, Yimin; Zhou, Jianhua (2004-08-13). "Survival motor neuron protein facilitates assembly of stress granules". FEBS letters. 572 (1-3): 69–74. ISSN 0014-5793. PMID 15304326. doi:10.1016/j.febslet.2004.07.010.
  126. Zou, Tie; Yang, Xianming; Pan, Danmin; Huang, Jia; Sahin, Mustafa; Zhou, Jianhua (May 2011). "SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress". Cellular and Molecular Neurobiology. 31 (4): 541–550. ISSN 1573-6830. PMID 21234798. doi:10.1007/s10571-011-9647-8.
  127. Chang, Yu-Wei; Huang, Yi-Shuian (2014). "Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival". PloS One. 9 (9): e107961. ISSN 1932-6203. PMC 4169592Freely accessible. PMID 25237887. doi:10.1371/journal.pone.0107961.
  128. Zhu, Chun-Hong; Kim, Jinyong; Shay, Jerry W.; Wright, Woodring E. (2008). "SGNP: an essential Stress Granule/Nucleolar Protein potentially involved in 5.8s rRNA processing/transport". PloS One. 3 (11): e3716. ISSN 1932-6203. PMC 2579992Freely accessible. PMID 19005571. doi:10.1371/journal.pone.0003716.
  129. Berger, A.; Ivanova, E.; Gareau, C.; Scherrer, A.; Mazroui, R.; Strub, K. (2014). "Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA". Nucleic Acids Research. 42 (17): 11203–11217. ISSN 1362-4962. PMC 4176187Freely accessible. PMID 25200073. doi:10.1093/nar/gku822.
  130. Delestienne, Nathalie; Wauquier, Corinne; Soin, Romuald; Dierick, Jean-François; Gueydan, Cyril; Kruys, Véronique (June 2010). "The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression". The FEBS journal. 277 (11): 2496–2514. ISSN 1742-4658. PMID 20477871. doi:10.1111/j.1742-4658.2010.07664.x.
  131. Fitzgerald, Kerry D.; Semler, Bert L. (September 2013). "Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein". Virus Research. 176 (1-2): 223–231. ISSN 1872-7492. PMC 3742715Freely accessible. PMID 23830997. doi:10.1016/j.virusres.2013.06.012.
  132. Kano, Shizuka; Nishida, Kensei; Kurebe, Hiroyuki; Nishiyama, Chihiro; Kita, Kentaro; Akaike, Yoko; Kajita, Keisuke; Kurokawa, Ken; Masuda, Kiyoshi (2014-02-01). "Oxidative stress-inducible truncated serine/arginine-rich splicing factor 3 regulates interleukin-8 production in human colon cancer cells". American Journal of Physiology. Cell Physiology. 306 (3): C250–262. ISSN 1522-1563. PMID 24284797. doi:10.1152/ajpcell.00091.2013.
  133. Thomas, María Gabriela; Martinez Tosar, Leandro J.; Desbats, María Andrea; Leishman, Claudia C.; Boccaccio, Graciela L. (2009-02-15). "Mammalian Staufen 1 is recruited to stress granules and impairs their assembly". Journal of Cell Science. 122 (Pt 4): 563–573. ISSN 0021-9533. PMC 2714435Freely accessible. PMID 19193871. doi:10.1242/jcs.038208.
  134. Quaresma, Alexandre J. C.; Bressan, G. C.; Gava, L. M.; Lanza, D. C. F.; Ramos, C. H. I.; Kobarg, Jörg (2009-04-01). "Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments". Experimental Cell Research. 315 (6): 968–980. ISSN 1090-2422. PMID 19331829. doi:10.1016/j.yexcr.2009.01.012.
  135. Liu-Yesucevitz, Liqun; Bilgutay, Aylin; Zhang, Yong-Jie; Vanderweyde, Tara; Vanderwyde, Tara; Citro, Allison; Mehta, Tapan; Zaarur, Nava; McKee, Ann (2010-10-11). "Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue". PloS One. 5 (10): e13250. ISSN 1932-6203. PMC 2952586Freely accessible. PMID 20948999. doi:10.1371/journal.pone.0013250.
  136. Freibaum, Brian D.; Chitta, Raghu K.; High, Anthony A.; Taylor, J. Paul (2010-02-05). "Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery". Journal of Proteome Research. 9 (2): 1104–1120. ISSN 1535-3907. PMC 2897173Freely accessible. PMID 20020773. doi:10.1021/pr901076y.
  137. Linder, Bastian; Plöttner, Oliver; Kroiss, Matthias; Hartmann, Enno; Laggerbauer, Bernhard; Meister, Gunter; Keidel, Eva; Fischer, Utz (2008-10-15). "Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP". Human Molecular Genetics. 17 (20): 3236–3246. ISSN 1460-2083. PMID 18664458. doi:10.1093/hmg/ddn219.
  138. 1 2 Stoll, Georg; Pietiläinen, Olli P. H.; Linder, Bastian; Suvisaari, Jaana; Brosi, Cornelia; Hennah, William; Leppä, Virpi; Torniainen, Minna; Ripatti, Samuli (September 2013). "Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders". Nature Neuroscience. 16 (9): 1228–1237. ISSN 1546-1726. PMC 3986889Freely accessible. PMID 23912948. doi:10.1038/nn.3484.
  139. Iannilli, Francesca; Zalfa, Francesca; Gartner, Annette; Bagni, Claudia; Dotti, Carlos G. (2013). "Cytoplasmic TERT Associates to RNA Granules in Fully Mature Neurons: Role in the Translational Control of the Cell Cycle Inhibitor p15INK4B". PloS One. 8 (6): e66602. ISSN 1932-6203. PMC 3688952Freely accessible. PMID 23825548. doi:10.1371/journal.pone.0066602.
  140. Chang, Wei-Lun; Tarn, Woan-Yuh (October 2009). "A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay". Nucleic Acids Research. 37 (19): 6600–6612. ISSN 1362-4962. PMC 2770677Freely accessible. PMID 19729507. doi:10.1093/nar/gkp717.
  141. Schaefer, Matthias; Pollex, Tim; Hanna, Katharina; Tuorto, Francesca; Meusburger, Madeleine; Helm, Mark; Lyko, Frank (2010-08-01). "RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage". Genes & Development. 24 (15): 1590–1595. ISSN 1549-5477. PMC 2912555Freely accessible. PMID 20679393. doi:10.1101/gad.586710.
  142. Buchan, J. Ross; Kolaitis, Regina-Maria; Taylor, J. Paul; Parker, Roy (2013-06-20). "Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function". Cell. 153 (7): 1461–1474. ISSN 1097-4172. PMC 3760148Freely accessible. PMID 23791177. doi:10.1016/j.cell.2013.05.037.
  143. Stöhr, Nadine; Lederer, Marcell; Reinke, Claudia; Meyer, Sylke; Hatzfeld, Mechthild; Singer, Robert H.; Hüttelmaier, Stefan (2006-11-20). "ZBP1 regulates mRNA stability during cellular stress". The Journal of Cell Biology. 175 (4): 527–534. ISSN 0021-9525. PMC 2064588Freely accessible. PMID 17101699. doi:10.1083/jcb.200608071.
  144. Deigendesch, Nikolaus; Koch-Nolte, Friedrich; Rothenburg, Stefan (2006). "ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains". Nucleic Acids Research. 34 (18): 5007–5020. ISSN 1362-4962. PMC 1636418Freely accessible. PMID 16990255. doi:10.1093/nar/gkl575.
  145. Stoecklin, Georg; Stubbs, Tiffany; Kedersha, Nancy; Wax, Stephen; Rigby, William F. C.; Blackwell, T. Keith; Anderson, Paul (2004-03-24). "MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay". The EMBO journal. 23 (6): 1313–1324. ISSN 0261-4189. PMID 15014438. doi:10.1038/sj.emboj.7600163.
  146. Holmes, Brent; Artinian, Nicholas; Anderson, Lauren; Martin, Jheralyn; Masri, Janine; Cloninger, Cheri; Bernath, Andrew; Bashir, Tariq; Benavides-Serrato, Angelica (January 2012). "Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress". Cellular Signalling. 24 (1): 309–315. ISSN 1873-3913. PMC 3205320Freely accessible. PMID 21964062. doi:10.1016/j.cellsig.2011.09.015.
  147. Murata, Tomiyasu; Morita, Noriyoshi; Hikita, Kiyomi; Kiuchi, Kiyomi; Kiuchi, Kazutoshi; Kaneda, Norio (2005-02-15). "Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain". Experimental Cell Research. 303 (2): 287–299. ISSN 0014-4827. PMID 15652343. doi:10.1016/j.yexcr.2004.09.031.

Review articles:

Laboratories:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.