Streptococcus thermophilus
Streptococcus thermophilus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Firmicutes |
Class: | Bacilli |
Order: | Lactobacillales |
Family: | Streptococcaceae |
Genus: | Streptococcus |
Species: | S. thermophilus |
Binomial name | |
Streptococcus thermophilus (ex Orla-Jensen 1919) Schleifer et al. 1995 | |
Synonyms | |
Streptococcus salivarius subsp. thermophilus (Orla-Jensen, 1919) Farrow et Collins 1984 |
Streptococcus thermophilus also known as Streptococcus salivarius subsp. thermophilus[1][2] is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group.[3] It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity.[3] It is non-motile and does not form endospores.[3] S. thermophilus is fimbriated.[4] It has an optimal growth temperature range of 35 - 42 °C while L. bulgaricus has an optimal range of 43 - 46 °C.[5]
It is also classified as a lactic acid bacterium.[6] S. thermophilus is found in fermented milk products, and is generally used in the production of yogurt,[7] alongside Lactobacillus delbrueckii subsp. bulgaricus. The two species are synergistic, and S. thermophilus probably provides L. d. bulgaricus with folic acid and formic acid which it uses for purine synthesis.[8]
Classification
At least 26 strains of S. thermophilis have been identified and their genomes sequenced.[9]
Uses
S. thermophilus is one of the most widely used bacteria in the dairy industry. USDA statistics from 1998 showed that more than 1.02 billion kilograms of mozzarella cheese and 621 million kilograms of yogurt were produced from S. thermophilus.[10] Although its genus, Streptococcus, includes some pathogenic species, food industries consider S. thermophilus a safer bacterium than many other Streptococcus species. In fact, yogurt and cheese that contain live cultures of S. thermophilus are thought to be beneficial to health.[11] Live cultures of S. thermophilus make it easier for people who are lactose intolerant to digest dairy products. The bacteria break down lactose, the sugar in milk, that lactose-intolerant people find difficult to digest.
Yogurt production
As early as the 1900s, S. thermophilus has been used to make yogurt. Its purpose is to turn lactose, the sugar in milk, into lactic acid. The increase in lactic acid turns milk into the gel-like structure characteristic of yogurt.[12]
Nomenclature
"Streptococcus" derives from a Greek term meaning "twisted berry" and refers to the way the bacterium is grouped in chains that resemble a string of beads.[13] "Thermophilus" derives from the Greek thermē, meaning "heat". It refers to an organism's ability to thrive at high temperatures.[14]
Research
Pathogenic potential
The genus Streptococcus includes several pathogenic species, such as S. pneumoniae and S. pyogenes, but food industries consider S. thermophilus non-pathogenic. S. thermophilus is believed to have developed separately from pathogenic Streptococcus species for at least 3000 years. Research teams have sequenced the genome of two strains of S. thermophilus, CNRZ1066 and LMG13811, and stated that the bacteria are not dangerous.[15]
Adjuvant
S. thermophilus strain Orla-Jensen 1919[16] is a constituent in VSL#3. This standardized formulation of live bacteria may be used in combination with conventional therapies to treat ulcerative colitis.[17][18] The use of the S. thermophilus-containing VSL#3 may reduce inflammation in mice.[19]
Reduced-fat cheese
S. thermophilus helps make reduced-fat cheese with similar characteristics to regular, full-fat cheese. In the experiment, two different strains of bacteria are used to make reduced-fat cheddar cheese: a strain of Lactococcus lactis and a strain of S. thermophilus. These bacteria are chosen because they produce exopolysaccharide (EPS) which give reduced-fat cheese a similar texture and flavor as regular cheese. However, cheese made from L. lactis yielded a different type of cheese from S. thermophilus.
L. lactis produced cheese with higher moisture levels compared to other reduced-fat cheeses. On the other hand, S. thermophilus produced low moisture cheese and decreased the bitterness of cheese. It had been concluded that applying both L. lactis and S. thermophilus strains create higher quality reduced-fat cheese with similar characteristics to regular cheese.[20]
Cancer
Chemotherapy often causes mucositis, severe inflammation of primarily the small intestines. Currently, there is no treatment to alleviate the symptoms of mucositis caused by chemotherapy. When rats were inflicted with mucositis by chemotherapy drugs, the intestinal tissues in those pretreated with streptococcus thermophilus TH-4 functioned more healthily and were less distressed.[21]
In her nutrition book, Food: Your Miracle Medicine, Jean Carper describes an experiment by Joseph A. Scimeca, in which commercially available yogurt containing S. thermophilus and L. d. bulgaricus was fed to mice. After these mice were injected with cancer cells, the incidence of lung cancer in the yogurt-fed mice was one-third less than expected.[22]
Antibiotic-associated diarrhea
Strains of S. thermophilus have also reduced risks of AAD (antibiotic-associated diarrhea), an issue that results from taking antibiotics. Antibiotics can have the adverse effect of destroying beneficial bacteria and causing harmful bacteria to multiply, which invokes diarrhea. Adults who ate yogurt containing S. thermophilus while being treated with antibiotics had lower rates of diarrhea than the control group (12.4% vs. 23.7%).[23]
Health concerns
The manipulation of the gut flora is complex and may cause bacteria-host interactions.[24] Although probiotics, in general, are considered safe, there are concerns about their use in certain cases.[24][25] Some people, such as those with compromised immune systems, short bowel syndrome, central venous catheters, heart valve disease and premature infants, may be at higher risk for adverse events.[26] Rarely, consumption of probiotics may cause bacteremia, and sepsis, potentially fatal infections in children with lowered immune systems or who are already critically ill.[27]
References
- ↑ Tannock, Gerald W., ed. (2005). Probiotics And Prebiotics: Scientific Aspects. Caister Academic Press. p. 43. ISBN 1-904455-01-8. Retrieved 2014-03-31.
- ↑ "Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 54". International Journal of Systematic Bacteriology. 45 (3): 619–620. July 1995. doi:10.1099/00207713-45-3-619.
- 1 2 3 "Bacteria Genomes – Streptococcus Thermophilus". European Bioinformatics Institute. Archived from the original on 19 February 2013.
- ↑ "Streptococcus_salivarius".
- ↑ "Influence_of_temperature_on_associative_growth_of_Streptococcus_thermophilus_and_Lactobacillus_bulgaricus.".
- ↑ Courtin, P.; Rul, F. O. (2003). "Interactions between microorganisms in a simple ecosystem: yogurt bacteria as a study model". Le Lait. 84: 125–134. doi:10.1051/lait:2003031.
- ↑ Kiliç, AO; Pavlova, SI; Ma, WG; Tao, L (1996). "Analysis of Lactobacillus phages and bacteriocins in American dairy products and characterization of a phage isolated from yogurt". Applied and Environmental Microbiology. 62 (6): 2111–6. PMC 167989 . PMID 8787408.
- ↑ Sieuwerts, S.; Molenaar, D.; Van Hijum, S. A. F. T.; Beerthuyzen, M.; Stevens, M. J. A.; Janssen, P. W. M.; Ingham, C. J.; De Bok, F. A. M.; De Vos, W. M.; Van Hylckama Vlieg, J. E. T. (2010). "Mixed-Culture Transcriptome Analysis Reveals the Molecular Basis of Mixed-Culture Growth in Streptococcus thermophilus and Lactobacillus bulgaricus". Applied and Environmental Microbiology. 76 (23): 7775–7784. PMC 2988612 . PMID 20889781. doi:10.1128/AEM.01122-10.
- ↑ "Contributing Species, Genome: Streptococcus thermophilus LMD-9, Clique ID: 480". The Integrated Microbial Genomes, The US Department of Energy Office of Science, Lawrence Berkeley National Laboratory and The Regents of the University of California. Retrieved 2016-06-25.
- ↑ Hutkins, Robert (2002). "Streptococcus Thermophilus LMD-9". JGI Microbes.
- ↑ Taylor, John R. and Mitchell, Deborah. The Wonder of Probiotics. New York, NY: St. Martin’s Press, 2007.
- ↑ Delcour, J.; Ferain, T.; Hols, P. (2000). "Advances in the Genetics of Thermophilic Lactic Acid Bacteria". Food Biotechnology. 11: 497–504. doi:10.1016/s0958-1669(00)00134-8.
- ↑ "Streptococcus." Encyclopædia Britannica. Encyclopædia Britannica Online. 13 April 2011.
- ↑ "Thermophile." Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica, 2011. Web. 24 Apr. 2011.
- ↑ "Streptococcus Thermophilus: A Bacterium Which Is Harmless to Health." International Research Associates. 14 Nov. 2006. Web. 25 Apr. 2011.
- ↑ Hood, Kerenza; Nuttall, Jacqui; Gillespie, David; Shepherd, Victoria; Wood, Fiona; Duncan, Donna; Stanton, Helen; Espinasse, Aude; Wootton, Mandy; Acharjya, Aruna; Allen, Stephen; Bayer, Antony; Carter, Ben; Cohen, David; Francis, Nick; Howe, Robin; Mantzourani, Efi; Thomas-Jones, Emma; Toghill, Alun; Butler, Christopher C (2014). "Probiotics for Antibiotic-Associated Diarrhoea (PAAD): a prospective observational study of antibiotic-associated diarrhoea (including Clostridium difficile-associated diarrhoea) in care homes" (PDF). Health Technology Assessment. 18 (63): 1–84. ISSN 1366-5278. doi:10.3310/hta18630.
- ↑ Ghouri, Yezaz A; Richards, David M; Rahimi, Erik F; Krill, Joseph T; Jelinek, Katherine A; DuPont, Andrew W (9 December 2014). "Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease". Clin Exp Gastroenterol. 7: 473–487. PMC 4266241 . PMID 25525379. doi:10.2147/CEG.S27530.
- ↑ Mardini, Houssam E.; Grigorian, Alla Y. (2014). "Probiotic Mix VSL#3 Is Effective Adjunctive Therapy for Mild to Moderately Active Ulcerative Colitis". Inflammatory Bowel Diseases. 20 (9): 1562–1567. ISSN 1078-0998. PMID 24918321. doi:10.1097/MIB.0000000000000084; Access provided by the University of Pittsburgh
- ↑ "The probiotic mixture VSL#3 has differential effects on intestinal immune parameters in healthy female BALB/c and C57BL/". National Center for Biotechnology Information , National Institutes of Health. 23 October 2014. Retrieved 2016-05-24.
- ↑ Awad, S; Hassan, AN; Muthukumarappan, K (2005). "Application of Exopolysaccharide-Producing Cultures in Reduced-Fat Cheddar Cheese". Journal of Dairy Science. 88: 4204–4213. doi:10.3168/jds.s0022-0302(05)73106-4.
- ↑ Whitford, E. J.; Cummins, A. G.; Butler, R. N.; Prisciandaro, L. D.; Fauser, J. K.; Yazbeck, R; Lawrence, A; Cheah, K. Y.; Wright, T. H.; Lymn, K. A.; Howarth, G. S. (2009). "Effects of Streptococcus thermophilus TH-4 on intestinal mucositis induced by the chemotherapeutic agent, 5-Fluorouracil (5-FU)". Cancer biology & therapy. 8 (6): 505–11. PMID 19305160. doi:10.4161/cbt.8.6.7594.
- ↑ Carper, Jean. Food: Your Miracle Medicine. New York, NY: Harper Collins Publishers, 1994
- ↑ Ripudaman S. Beniwal; Vincent C. Arena; Leno Thomas; Sudhir Narla; Thomas F. Imperiale; Rauf A. Chaudhry; Usman A. Ahmad (2003). "A Randomized Trial of Yogurt for Prevention of Antibiotic-Associated Diarrhea". Digestive Diseases and Sciences. 48 (10): 2077–2082. PMID 14627358. doi:10.1023/A:1026155328638.
- 1 2 Durchschein F, Petritsch W, Hammer HF (2016). "Diet therapy for inflammatory bowel diseases: The established and the new.". World J Gastroenterol (Review). 22 (7): 2179–94. PMC 4734995 . PMID 26900283. doi:10.3748/wjg.v22.i7.2179.
- ↑ Boyle RJ, Robins-Browne RM, Tang ML (2006). "Probiotic use in clinical practice: what are the risks?". Am J Clin Nutr (Review). 83 (6): 1256–64; quiz 1446–7. PMID 16762934.
- ↑ Doron S, Snydman DR (2015). "Risk and safety of probiotics.". Clin Infect Dis (Review). 60 Suppl 2: S129–34. PMC 4490230 . PMID 25922398. doi:10.1093/cid/civ085.
- ↑ Singhi SC, Kumar S (2016). "Probiotics in critically ill children.". F1000Res (Review). 5: 407. PMC 4813632 . PMID 27081478. doi:10.12688/f1000research.7630.1.