State complexity

State complexity is an area of theoretical computer science dealing with the size of abstract automata, such as different kinds of finite automata. The classical result in the area is that simulating an -state nondeterministic finite automaton by a deterministic finite automaton requires exactly states in the worst case.

Transformation between variants of finite automata

Finite automata can be deterministic and nondeterministic, one-way (DFA, NFA) and two-way (2DFA, 2NFA). Other related classes are unambiguous (UFA), self-verifying (SVFA) and alternating (AFA) finite automata. These automata can also be two-way (2UFA, 2SVFA, 2AFA).

All these machines can accept exactly the regular languages. However, the size of different types of automata necessary to accept the same language (measured in the number of their states) may be different. For any two types of finite automata, the state complexity tradeoff between them is an integer function where is the least number of states in automata of the second type sufficient to recognize every language recognized by an -state automaton of the first type. The following results are known.

The 2DFA vs. 2NFA problem and logarithmic space

Unsolved problem in computer science:
Does every n-state 2NFA have an equivalent poly(n)-state 2DFA?
(more unsolved problems in computer science)

It is an open problem whether all 2NFAs can be converted to 2DFAs with polynomially many states, i.e. whether there is a polynomial such that for every -state 2NFA there exists a -state 2DFA. The problem was raised by Sakoda and Sipser,[15] who compared it to the P vs. NP problem in the computational complexity theory. Berman and Lingas[16] discovered a formal relation between this problem and the L vs. NL open problem. This relation was further elaborated by Kapoutsis.[17]

State complexity of operations for finite automata

Given a binary regularity-preserving operation on languages and a family of automata X (DFA, NFA, etc.), the state complexity of is an integer function such that

Analogous definition applies for operations with any number of arguments.

The first results on state complexity of operations for DFAs were published by Maslov [18] and by Yu, Zhuang and Salomaa. [19] Holzer and Kutrib [20] pioneered the state complexity of operations on NFA. The known results for basic operations are listed below.

Union

If language requires m states and language requires n states, how many states requires?

Intersection

How many states requires?

Complementation

If language L requires n states then how many states its complement requires?

Concatenation

How many states requires?

Kleene star

Reversal

Finite automata over a unary alphabet

State complexity of finite automata with a one-letter (unary) alphabet, pioneered by Chrobak,[31] is different from the multi-letter case.

Let be Landau's function.

Transformation between models

For a one-letter alphabet, transformations between different types of finite automata are sometimes more efficient than in the general case.

Union

Intersection

Complementation

Concatenation

Kleene star

Further reading

Surveys of state complexity were written by Holzer and Kutrib[35][36] and by Gao et al.[37]

New research on state complexity is commonly presented at the annual workshops on Descriptional Complexity of Formal Systems (DCFS), at the Conference on Implementation and Application of Automata (CIAA), and at various conferences on theoretical computer science in general.

References

  1. Rabin, M. O.; Scott, D. (1959). "Finite Automata and Their Decision Problems". IBM Journal of Research and Development. 3 (2): 114–125. ISSN 0018-8646. doi:10.1147/rd.32.0114.
  2. Lupanov, Oleg B. (1963). "A comparison of two types of finite sources". Problemy Kibernetiki. 9: 321–326.
  3. 1 2 Leung, Hing (2005). "Descriptional complexity of NFA of different ambiguity". International Journal of Foundations of Computer Science. 16 (5): 975–984. ISSN 0129-0541. doi:10.1142/S0129054105003418.
  4. 1 2 Schmidt, Erik M. (1978). Succinctness of Description of Context-Free, Regular and Unambiguous Languages (Ph.D.). Cornell University.
  5. Jirásková, Galina; Pighizzini, Giovanni (2011). "Optimal simulation of self-verifying automata by deterministic automata". Information and Computation. 209 (3): 528–535. ISSN 0890-5401. doi:10.1016/j.ic.2010.11.017.
  6. 1 2 3 Kapoutsis, Christos (2005). "Removing Bidirectionality from Nondeterministic Finite Automata". Lecture Notes in Computer Science. 3618: 544–555. ISBN 978-3-540-28702-5. ISSN 0302-9743. doi:10.1007/11549345_47.
  7. Shepherdson, J. C. (1959). "The Reduction of Two-Way Automata to One-Way Automata". IBM Journal of Research and Development. 3 (2): 198–200. ISSN 0018-8646. doi:10.1147/rd.32.0198.
  8. Moore, F.R. (1971). "On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata". IEEE Transactions on Computers. C–20 (10): 1211–1214. ISSN 0018-9340. doi:10.1109/T-C.1971.223108.
  9. Birget, Jean-Camille (1993). "State-complexity of finite-state devices, state compressibility and incompressibility". Mathematical Systems Theory. 26 (3): 237–269. ISSN 0025-5661. doi:10.1007/BF01371727.
  10. Vardi, Moshe Y. (1989). "A note on the reduction of two-way automata to one-way automata". Information Processing Letters. 30 (5): 261–264. ISSN 0020-0190. doi:10.1016/0020-0190(89)90205-6.
  11. Chandra, Ashok K.; Kozen, Dexter C.; Stockmeyer, Larry J. (1981). "Alternation". Journal of the ACM. 28 (1): 114–133. ISSN 0004-5411. doi:10.1145/322234.322243.
  12. Fellah, A.; Jürgensen, H.; Yu, S. (1990). "Constructions for alternating finite automata∗". International Journal of Computer Mathematics. 35 (1–4): 117–132. ISSN 0020-7160. doi:10.1080/00207169008803893.
  13. Ladner, Richard E.; Lipton, Richard J.; Stockmeyer, Larry J. (1984). "Alternating Pushdown and Stack Automata". SIAM Journal on Computing. 13 (1): 135–155. ISSN 0097-5397. doi:10.1137/0213010.
  14. Geffert, Viliam; Okhotin, Alexander (2014). "Transforming Two-Way Alternating Finite Automata to One-Way Nondeterministic Automata". Lecture Notes in Computer Science. 8634: 291–302. ISBN 978-3-662-44521-1. ISSN 0302-9743. doi:10.1007/978-3-662-44522-8_25.
  15. Sakoda, William J.; Sipser, Michael (1978). Nondeterminism and the Size of Two Way Finite Automata. STOC 1978. ACM. pp. 275–286. doi:10.1145/800133.804357.
  16. Berman, Piotr; Lingas, Andrzej (1977). On the complexity of regular languages in terms of finite automata. Report 304. Polish Academy of Sciences.
  17. Kapoutsis, Christos A. (2014). "Two-Way Automata Versus Logarithmic Space". Theory of Computing Systems. 55 (2): 421–447. doi:10.1007/s00224-013-9465-0.
  18. 1 2 3 4 5 Maslov, A. N. (1970). "Estimates of the number of states of finite automata". Soviet Mathematics Doklady. 11: 1373–1375.
  19. 1 2 3 4 5 6 7 8 9 10 Yu, Sheng; Zhuang, Qingyu; Salomaa, Kai (1994). "The state complexities of some basic operations on regular languages". Theoretical Computer Science. 125 (2): 315–328. ISSN 0304-3975. doi:10.1016/0304-3975(92)00011-F.
  20. 1 2 3 4 5 6 7 8 9 10 11 Holzer, Markus; Kutrib, Martin (2003). "Nondeterministic descriptional complexity of regular languages". International Journal of Foundations of Computer Science. 14 (6): 1087–1102. ISSN 0129-0541. doi:10.1142/S0129054103002199.
  21. 1 2 3 4 5 Jirásek, Jozef; Jirásková, Galina; Šebej, Juraj (2016). "Operations on Unambiguous Finite Automata". Lecture Notes in Computer Science. 9840: 243–255. ISBN 978-3-662-53131-0. ISSN 0302-9743. doi:10.1007/978-3-662-53132-7_20.
  22. 1 2 3 4 5 Jirásek, Jozef Štefan; Jirásková, Galina; Szabari, Alexander (2015). "Operations on Self-Verifying Finite Automata". 9139: 231–261. ISSN 0302-9743. doi:10.1007/978-3-319-20297-6_16.
  23. 1 2 3 4 5 6 7 8 9 Kunc, Michal; Okhotin, Alexander (2012). "State complexity of operations on two-way finite automata over a unary alphabet". Theoretical Computer Science. 449: 106–118. ISSN 0304-3975. doi:10.1016/j.tcs.2012.04.010.
  24. 1 2 3 4 Kunc, Michal; Okhotin, Alexander (2011). "State Complexity of Union and Intersection for Two-way Nondeterministic Finite Automata". Fundamenta Informaticae. 110: 231–239. doi:10.3233/FI-2011-540 (inactive 2017-03-22).
  25. Birget, Jean-Camille (1993). "Partial orders on words, minimal elements of regular languages, and state complexity". Theoretical Computer Science. 119 (2): 267–291. ISSN 0304-3975. doi:10.1016/0304-3975(93)90160-U.
  26. 1 2 3 4 5 Okhotin, Alexander (2012). "Unambiguous finite automata over a unary alphabet". Information and Computation. 212: 15–36. ISSN 0890-5401. doi:10.1016/j.ic.2012.01.003.
  27. 1 2 Geffert, Viliam; Mereghetti, Carlo; Pighizzini, Giovanni (2007). "Complementing two-way finite automata". Information and Computation. 205 (8): 1173–1187. ISSN 0890-5401. doi:10.1016/j.ic.2007.01.008.
  28. 1 2 3 Jirásková, Galina; Okhotin, Alexander (2008). "On the State Complexity of Operations on Two-Way Finite Automata". Lecture Notes in Computer Science. 5257: 443–454. ISBN 978-3-540-85779-2. ISSN 0302-9743. doi:10.1007/978-3-540-85780-8_35.
  29. Mirkin, Boris G. (1966). "On dual automata". Cybernetics. 2: 6–9.
  30. Leiss, Ernst (1985). "Succinct representation of regular languages by boolean automata II". Theoretical Computer Science. 38: 133–136. ISSN 0304-3975. doi:10.1016/0304-3975(85)90215-4.
  31. 1 2 3 4 Chrobak, Marek (1986). "Finite automata and unary languages". Theoretical Computer Science. 47: 149–158. ISSN 0304-3975. doi:10.1016/0304-3975(86)90142-8.
  32. Kunc, Michal; Okhotin, Alexander (2011). "Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups". 6795: 324–336. ISSN 0302-9743. doi:10.1007/978-3-642-22321-1_28.
  33. Mereghetti, Carlo; Pighizzini, Giovanni (2001). "Optimal Simulations between Unary Automata". SIAM Journal on Computing. 30 (6): 1976–1992. ISSN 0097-5397. doi:10.1137/S009753979935431X.
  34. 1 2 Geffert, Viliam; Mereghetti, Carlo; Pighizzini, Giovanni (2003). "Converting two-way nondeterministic unary automata into simpler automata". Theoretical Computer Science. 295 (1-3): 189–203. ISSN 0304-3975. doi:10.1016/S0304-3975(02)00403-6.
  35. Holzer, Markus; Kutrib, Martin (2009). "Nondeterministic finite automata — recent results on the descriptional and computational complexity". International Journal of Foundations of Computer Science. 20 (4): 563–580. ISSN 0129-0541. doi:10.1142/S0129054109006747.
  36. Holzer, Markus; Kutrib, Martin (2011). "Descriptional and computational complexity of finite automata—A survey". Information and Computation. 209 (3): 456–470. ISSN 0890-5401. doi:10.1016/j.ic.2010.11.013.
  37. Gao, Yuan; Moreira, Nelma; Reis, Rogério; Yu, Sheng (2015). "A Survey on Operational State Complexity". arXiv:1509.03254v1Freely accessible [cs.FL].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.