Staphylococcus

"Staph" redirects here. It is not to be confused with Staff.

Staphylococcus
SEM micrograph of S. aureus colonies: Note the grape-like clustering common to Staphylococcus species.
Scientific classification
Domain: Bacteria
Phylum: Firmicutes
Class: Bacilli
Order: Bacillales
Family: Staphylococcaceae
Genus: Staphylococcus
Rosenbach 1884
Species

S. argenteus
S. arlettae
S. agnetis
S. aureus
S. auricularis
S. capitis
S. caprae
S. carnosus
S. caseolyticus
S. chromogenes
S. cohnii
S. condimenti
S. delphini
S. devriesei
S. epidermidis
S. equorum
S. felis
S. fleurettii
S. gallinarum
S. haemolyticus
S. hominis
S. hyicus
S. intermedius
S. kloosii
S. leei
S. lentus
S. lugdunensis
S. lutrae
S. lyticans
S. massiliensis
S. microti
S. muscae
S. nepalensis
S. pasteuri
S. petrasii
S. pettenkoferi
S. piscifermentans
S. pseudintermedius
S. pseudolugdunensis
S. pulvereri
S. rostri
S. saccharolyticus
S. saprophyticus
S. schleiferi
S. schweitzeri
S. sciuri
S. simiae
S. simulans
S. stepanovicii
S. succinus
S. vitulinus
S. warneri
S. xylosus

Staphylococcus (from the Greek: σταφυλή, staphylē, "grape" and κόκκος, kókkos, "granule") is a genus of Gram-positive bacteria. Under the microscope, they appear round (cocci), and form in grape-like clusters. Staphylococcus can be treated by having Vitamin C and Vitamin E together because they are antioxidants and help your immune system fight the bacteria. [1]

The Staphylococcus genus includes at least 40 species. Of these, nine have two subspecies, one has three subspecies, and one has four subspecies.[2] Most are harmless and reside normally on the skin and mucous membranes of humans and other organisms. Found worldwide, they are a small component of soil microbial flora.[3]

Taxonomy

The taxonomy is based on 16s rRNA sequences,[4] and most of the staphylococcal species fall into 11 clusters:

  1. S. aureus group – S. argenteus, S. aureus, S. schweitzeri, S. simiae
  2. S. auricularis group – S. auricularis
  3. S. carnosus group – S. carnosus, S. condimenti, S. massiliensis, S. piscifermentans, S. simulans
  4. S. epidermidis group – S. capitis, S. caprae, S. epidermidis, S. saccharolyticus
  5. S. haemolyticus group – S. devriesei, S. haemolyticus, S. hominis
  6. S. hyicus-intermedius group – S. agnetis, S. chromogenes, S. felis, S. delphini, S. hyicus, S. intermedius, S. lutrae, S. microti, S. muscae, S. pseudintermedius, S. rostri, S. schleiferi
  7. S. lugdunensis group – S. lugdunensis
  8. S. saprophyticus group – S. arlettae, S. cohnii, S. equorum, S. gallinarum, S. kloosii, S. leei, S. nepalensis, S. saprophyticus, S. succinus, S. xylosus
  9. S. sciuri group – S. fleurettii, S. lentus, S. sciuri, S. stepanovicii, S. vitulinus
  10. S. simulans group – S. simulans
  11. S. warneri group – S. pasteuri, S. warneri

A 12th group – that of S. caseolyticus – has now been moved to a new genus, Macrococcus, the species of which are currently the closest known relatives of Staphylococcus.[5]

Two sepecies were described in 2015 - Staphylococcus argenteus and Staphylococcus schweitzeri - both of which were previously considered variants of S. aureus.[6]

Subspecies

S. aureus subsp. aureus
S. aureus subsp. anaerobius

S. capitis subsp. capitis
S. capitis subsp. urealyticus

S. carnosus subsp. carnosus
S. carnosus subsp. utilis

S. cohnii subsp. cohnii
S. cohnii subsp. urealyticus

S. equorum subsp. equorum
S. equorum subsp. linens

S. hominis subsp. hominis
S. hominis subsp. novobiosepticus

S petrasii subsp. croceilyticus
S petrasii subsp. jettensis
S petrasii subsp. petrasii
S petrasii subsp. pragensis

S. saprophyticus subsp. bovis
S. saprophyticus subsp. saprophyticus

S. schleiferi subsp. coagulans
S. schleiferi subsp. schleiferi

S. sciuri subsp. carnaticus
S. sciuri subsp. rodentium
S. sciuri subsp. sciuri

S. succinus subsp. casei
S. succinus subsp. succinus

Notes

As with all generic names in binomial nomenclature, Staphylococcus is capitalized when used alone or with a specific species. Also, the abbreviations Staph and S. when used with a species (S. aureus) are correctly italicized and capitalized (though often errors in this are seen in popular literature). However, Staphylococcus is not capitalized or italicized when used in adjectival forms, as in a staphylococcal infection, or as the informal plural (staphylococci).[7]

The S. saprophyticus and S. sciuri groups are generally novobiocin-resistant, as is S. hominis subsp. novobiosepticus.

Members of the S. sciuri group are oxidase-positive due to their possession of the enzyme cytochrome c oxidase. This group is the only clade within the staphylococci to possess this gene.

The S. sciuri group appears to be the closest relations to the genus Macrococcus.

S. pulvereri has been shown to be a junior synonym of S. vitulinus.[8]

Within these clades, the S. haemolyticus and S. simulans groups appear to be related, as do the S. aureus and S. epidermidis groups.[9]

S. lugdunensis appears to be related to the S. haemolyticus group.

S. petrasii may be related to S. haemolyticus, but this needs to be confirmed.

The taxonomic position of S. lyticans, S. pettenkoferi, S. petrasii, and S. pseudolugdunensis has yet to be clarified. The published descriptions of these species do not appear to have been validly published.

Biochemical identification

Assignment of a strain to the genus Staphylococcus requires it to be a Gram-positive coccus that forms clusters, produces catalase, has an appropriate cell wall structure (including peptidoglycan type and teichoic acid presence) and G + C content of DNA in a range of 30–40 mol%.

Staphylococcus species can be differentiated from other aerobic and facultative anaerobic, Gram-positive cocci by several simple tests. Staphylococcus species are facultative anaerobes (capable of growth both aerobically and anaerobically). All species grow in the presence of bile salts.

All species were once thought to be coagulase-positive, but this has since been disproven.[1][10][11]

Growth can also occur in a 6.5% NaCl solution. On Baird Parker medium, Staphylococcus species grow fermentatively, except for S. saprophyticus, which grows oxidatively. Staphylococcus species are resistant to bacitracin (0.04 U disc: resistance = < 10 mm zone of inhibition) and susceptible to furazolidone (100 μg disc: resistance = < 15 mm zone of inhibition). Further biochemical testing is needed to identify to the species level.

When these bacteria divide, they do so along two axes, so form clumps of bacteria. This is as opposed to streptococci, which divide along one axis, so form chains (strep meaning twisted or pliant).

Coagulase production

One of the most important phenotypical features used in the classification of staphylococci is their ability to produce coagulase, an enzyme that causes blood clot formation.

Six species are currently recognised as being coagulase-positive: S. aureus, S. delphini, S. hyicus, S. intermedius, S. lutrae, S. pseudintermedius, and S. schleiferi subsp. coagulans. These species belong to two separate groups – the S. aureus (S. aureus alone) group and the S. hyicus-intermedius group (the remaining five).

A seventh species has also been described – Staphylococcus leei – from patients with gastritis.[12]

S. aureus is coagulase-positive, meaning it produces coagulase. However, while the majority of S. aureus strains are coagulase-positive, some may be atypical in that they do not produce coagulase. S. aureus is catalase-positive (meaning that it can produce the enzyme catalase) and able to convert hydrogen peroxide (H2O2) to water and oxygen, which makes the catalase test useful to distinguish staphylococci from enterococci and streptococci.

S. pseudintermedius inhabits and sometimes infects the skin of domestic dogs and cats. This organism, too, can carry the genetic material that imparts multiple bacterial resistance. It is rarely implicated in infections in humans, as a zoonosis.

S. epidermidis, a coagulase-negative species, is a commensal of the skin, but can cause severe infections in immunosuppressed patients and those with central venous catheters. S. saprophyticus, another coagulase-negative species that is part of the normal vaginal flora, is predominantly implicated in genitourinary tract infections in sexually active young women. In recent years, several other Staphylococcus species have been implicated in human infections, notably S. lugdunensis, S. schleiferi, and S. caprae.

Common abbreviations for coagulase-negative staphylococci are CoNS, CNS, or CNST.[13] The American Society for Microbiology abbreviates coagulase-negative staphylococci as "CoNS".

Genomics and molecular biology

The first S. aureus genomes to be sequenced were those of N315 and Mu50, in 2001. Many more complete S. aureus genomes have been submitted to the public databases, making it one of the most extensively sequenced bacteria. The use of genomic data is now widespread and provides a valuable resource for researchers working with S. aureus. Whole genome technologies, such as sequencing projects and microarrays, have shown an enormous variety of S. aureus strains. Each contains different combinations of surface proteins and different toxins. Relating this information to pathogenic behaviour is one of the major areas of staphylococcal research. The development of molecular typing methods has enabled the tracking of different strains of S. aureus. This may lead to better control of outbreak strains. A greater understanding of how the staphylococci evolve, especially due to the acquisition of mobile genetic elements encoding resistance and virulence genes is helping to identify new outbreak strains and may even prevent their emergence.[14]

The widespread incidence of antibiotic resistance across various strains of S. aureus, or across different species of Staphylococcus has been attributed to horizontal gene transfer of genes encoding antibiotic/metal resistance and virulence. A recent study demonstrated the extent of horizontal gene transfer among Staphylococcus to be much greater than previously expected, and encompasses genes with functions beyond antibiotic resistance and virulence, and beyond genes residing within the mobile genetic elements.[15]

Various strains of Staphylococcus are available from biological research centres, such as the National Collection of Type Cultures.

Host range

Unknown variety of Staphylococcus, Gram-stained - numbered ticks on the scale are 11 µm apart

Members of the genus Staphylococcus frequently colonize the skin and upper respiratory tracts of mammals and birds. Some species specificity has been observed in host range, such that the Staphylococcus species observed on some animals appear more rarely on more distantly related host species.[16] Some of the observed host specificity includes:

S. arlattaechickens, goats
S. aureus - humans[17]
S. auricularisdeer, dogs, humans
S. capitis – humans
S. caprae – goats, humans
S. cohnii – chickens, humans
S. delphinidolphins
S. devrieseicattle
S. epidermidis – humans
S. equorumhorses
S. feliscats
S. fleurettii – goats
S. gallinarum – chickens, goats, pheasants
S. haemolyticus – humans, Cercocebus, Erythrocebus, Lemur, Macca, Microcebus, Pan
S. hyicuspigs
S. leei – humans
S. lentus – goats, rabbits, sheep
S. lugdunensis – humans, goats
S. lutraeotters
S. microti – voles (Microtus arvalis)
S. nepalensis – goats
S. pasteuri – humans, goats
S. pettenkoferi – humans
S. pseudintermedius – dogs
S. rostripigs
S. schleiferi – humans
S. sciuri – humans, dogs, goats
S. simiae – South American squirrel monkeys (Saimiri sciureus)
S. simulans – humans
S. warneri – humans, Cercopithecoidea, Pongidae
S. xylosus – humans

Clinical

Staphylococcus can cause a wide variety of diseases in humans and animals through either toxin production or penetration. Staphylococcal toxins are a common cause of food poisoning, for they can be produced by bacteria growing in improperly stored food items. The most common sialadenitis is caused by staphylococci, as bacterial infections.[18]

See also

Wikispecies has information related to: Staphylococcus

Notes and references

  1. 1 2 Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9.
  2. Harris L.G; Foster S.J; Richards S. G. (2002). "An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review" (PDF). European Cells & Materials. 4: 39–60. PMID 14562246.
  3. Madigan M, Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.
  4. Takahashi T, Satoh I, Kikuchi N (1999). "Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis" (PDF). Int. J. Syst. Bacteriol. 49 (2): 725–728. PMID 10319495. doi:10.1099/00207713-49-2-725.
  5. Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ, Ludwig W, Schleifer KH, Fiedler F, Schubert K (1998). "Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. nov. and Macrococcus carouselicus sp. nov" (PDF). Int J Syst Bacteriol. 48 (3): 859–877. PMID 9734040. doi:10.1099/00207713-48-3-859.
  6. Tong SY, Schaumburg F, Ellington MJ, Corander J, Pichon B, Leendertz F, Bentley SD, Parkhill J, Holt DC, Peters G, Giffard PM (2015) Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int J Syst Evol Microbiol. 65(Pt 1):15-22
  7. See genus and species capitalization.
  8. Svec P., Vancanneyt M., Sedláek I., Engelbeen K., Stetina V., Swings, J. & Petrá, P. (2004). "Reclassification of Staphylococcus pulvereri Zakrzewska-Czerwiska et al. 1995 as a later synonym of Staphylococcus vitulinus Webster et al 1994" (PDF). Int. J. Syst. Evol. Microbiol. 54 (6): 2213–2215. PMID 15545460. doi:10.1099/ijs.0.63080-0.
  9. Ghebremedhin B, Layer F, König W, König B (2008). "Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences". J. Clin. Microbiol. 46 (3): 1019–1025. PMC 2268370Freely accessible. PMID 18174295. doi:10.1128/JCM.02058-07.
  10. PreTest, Surgery, 12th ed., p. 88
  11. Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP (1997). "Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction". Journal of Food Protection. 60 (6): 686–8.
  12. Jin M, Rosario W, Watler E, Calhoun DH (2004). "Development of a large-scale HPLC-based purification for the urease from Staphylococcus leei and determination of subunit structure" (PDF). Protein Expr. Purif. 34 (1): 111–117. PMID 14766306. doi:10.1016/j.pep.2003.10.012.
  13. Karsten Becker, Christine Heilmann, Georg Peters: Coagulase-negative staphylococci. Clin Microbiol Rev. 2014 Oct;27(4), S. 870–926
  14. Lindsay J (editor). (2008). Staphylococcus: Molecular Genetics. Caister Academic Press. ISBN 1-904455-29-8. .
  15. Chan CX, Beiko RG, Ragan MA (2011). "Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements". J Bacteriol. 193 (15): 3964–3977. PMC 3147504Freely accessible. PMID 21622749. doi:10.1128/JB.01524-10.
  16. Kloos WE (1980). "Natural Populations of the Genus Staphylococcus". Annual Review of Microbiology. 34: 559–592. PMID 7002032. doi:10.1146/annurev.mi.34.100180.003015.
  17. 'Staph Infection in Nose.'
  18. "Sialoadenitis: inflammation of the salivary glands". The Medical Consumer's Advocate. 2001-01-04. Retrieved 2011-01-04.
Wikimedia Commons has media related to Staphylococcus.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.