Sparfloxacin

Sparfloxacin
Clinical data
AHFS/Drugs.com Micromedex Detailed Consumer Information
MedlinePlus a600002
Pregnancy
category
  • US: C (Risk not ruled out)
Routes of
administration
Oral
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability 92%
Protein binding 45%
Metabolism Hepatic glucuronidation
Cytochrome P450 system not involved
Biological half-life 16 to 30 hours
Excretion Fecal (50%) and renal (50%)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.157.238
Chemical and physical data
Formula C19H22F2N4O3
Molar mass 392.41 g/mol
3D model (JSmol)
  (verify)

Sparfloxacin (spar FLOX a sin), trade names Spacin in Bangladesh, Zagam and Zagam Respipac, is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile.[1] Zagam is no longer available in the United States.

Pharmacological properties

Sparfloxacin is about 37-45% bound to proteins in the blood.[2][3]

Shimada et al. ( 1993) has summarized many of the studies published in Japanese regarding the tissue distribution of sparfloxacin. (high concentrations are achieved in sputum, pleural fluid, skin, lung, prostate, gynecological tissues, breast milk and otolaryngological tissues. *Salivary concentrations are 66-70% of plasma levels, while CSF penetration appears to be somewhat limited with CSF:plasma concentration ratios of only 0.25-0.35.

In rabbits, sparfloxacin achieves very good penetration into the ocular vitreous (54%), cornea (76%) and lens (36%).[8]

Medical uses

The compound is indicated for treating community-acquired lower respiratory tract infections (acute sinusitis, exacerbations of chronic bronchitis caused by susceptible bacteria, community-acquired pneumonia).[9][10][11][12]

Adverse drug reactions

Mechanism of action

Sparfloxacin, like other quinolones and fluoroquinolones, are bactericidal drugs, actively killing bacteria. Quinolones inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Quinolones can enter cells easily and therefore are often used to treat intracellular pathogens such as Legionella pneumophila and Mycoplasma pneumoniae. For many gram-negative bacteria DNA gyrase is the target, whereas topoisomerase IV is the target for many gram-positive bacteria. Eukaryotic cells do not contain DNA gyrase or topoisomerase IV.

See also

References

  1. Psaty, BM. (Dec 2008). "Clinical trial design and selected drug safety issues for antibiotics used to treat community-acquired pneumonia.". Clin Infect Dis. 47 Suppl 3: S176–9. PMC 2587028Freely accessible. PMID 18986285. doi:10.1086/591400.
  2. Shimada, J.; Nogita, T.; Ishibashi, Y. (1993). "Clinical pharmacokinetics of sparfloxacin". Clinical pharmacokinetics. 25 (5): 358–369. PMID 8287631. doi:10.2165/00003088-199325050-00002.
  3. Montay, G. (1996). "Pharmacokinetics of sparfloxacin in healthy volunteers and patients: A review". The Journal of antimicrobial chemotherapy. 37 Suppl A: 27–39. PMID 8737123. doi:10.1093/jac/37.suppl_a.27.
  4. Johnson JH, Cooper MA, Andrews JM, Wise R (November 1992). "Pharmacokinetics and inflammatory fluid penetration of sparfloxacin". Antimicrob. Agents Chemother. 36 (11): 2444–6. PMC 284350Freely accessible. PMID 1336947. doi:10.1128/aac.36.11.2444. Retrieved 2014-10-15.
  5. Nogita, T.; Ishibashi, Y. (1991). "The penetration of sparfloxacin into human plasma and skin tissues". The Journal of antimicrobial chemotherapy. 28 (2): 313–314. PMID 1663927. doi:10.1093/jac/28.2.313.
  6. García I, Pascual A, Guzman MC, Perea EJ (May 1992). "Uptake and intracellular activity of sparfloxacin in human polymorphonuclear leukocytes and tissue culture cells". Antimicrob. Agents Chemother. 36 (5): 1053–6. PMC 188834Freely accessible. PMID 1324636. doi:10.1128/aac.36.5.1053. Retrieved 2014-10-15.
  7. Wise, R.; Honeybourne, D. (1996). "A review of the penetration of sparfloxacin into the lower respiratory tract and sinuses". The Journal of antimicrobial chemotherapy. 37 Suppl A: 57–63. PMID 8737125. doi:10.1093/jac/37.suppl_a.57.
  8. Cochereau-Massin, I.; Bauchet, J.; Marrakchi-Benjaafar, S.; Saleh-Mghir, A.; Faurisson, F.; Vallois, J. M.; Vallee, E.; Pocidalo, J. J. (1993). "Efficacy and ocular penetration of sparfloxacin in experimental streptococcal endophthalmitis". Antimicrobial Agents and Chemotherapy. 37 (4): 633–636. PMC 187726Freely accessible. PMID 8388193. doi:10.1128/aac.37.4.633.
  9. Rubinstein E (May 1996). "Safety profile of sparfloxacin in the treatment of respiratory tract infections". J. Antimicrob. Chemother. 37 Suppl A: 145–60. PMID 8737134. doi:10.1093/jac/37.suppl_a.145. Retrieved 2014-10-15.
  10. Goa KL, Bryson HM, Markham A (April 1997). "Sparfloxacin. A review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections". Drugs. 53 (4): 700–25. PMID 9098667. doi:10.2165/00003495-199753040-00010.
  11. Stein GE, Havlichek DH (1997). "Sparfloxacin: potential clinical and economic impact in the treatment of respiratory infections". Pharmacotherapy. 17 (6): 1139–47. PMID 9399598. doi:10.1002/j.1875-9114.1997.tb03079.x. Retrieved 2014-10-15.
  12. Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS, Embil J, Smith H, Hoban DJ (2002). "A critical review of the fluoroquinolones: focus on respiratory infections". Drugs. 62 (1): 13–59. PMID 11790155. doi:10.2165/00003495-200262010-00002.
  13. (p. II44)
  14. Ramsay and Obershkova, 1974
  15. Bowie et al., 1989
  16. Davey, 1989
  17. Wolfson and Hooper, 1991
  18. Rubinstein, E. (1996). "Safety profile of sparfloxacin in the treatment of respiratory tract infections". The Journal of antimicrobial chemotherapy. 37 Suppl A: 145–160. PMID 8737134. doi:10.1093/jac/37.suppl_a.145.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.