Space-based measurements of carbon dioxide

Artist's conception of OCO-2, the second successful high precision (better than 0.3%) CO2 observing satellite.

Space-based measurements of carbon dioxide (CO2) are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure CO2 was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision (better than 0.3% or 1 ppm) satellites (GOSAT and OCO-2). Different instrument designs may reflect different primary missions.

Purposes and highlights of findings

There are outstanding questions in carbon cycle science that satellite observations can help answer. The Earth system absorbs about half of all anthropogenic CO2 emissions.[1] However, it is unclear exactly how this uptake is partitioned to different regions across the globe. It is also uncertain how different regions will behave in terms of CO2 flux under a different climate. For example, a forest may increase CO2 uptake due to the fertilization or β-effect,[2] or it could release CO2 due to increased metabolism by microbes at higher temperatures.[3] These questions are difficult to answer with historically spatially and temporally limited data sets.

Even though satellite observations of CO2 are somewhat recent, they have been used for a number of different purposes, some of which are highlighted here.

Challenges

Remote sensing of trace gases has several challenges. Most techniques rely on observing infrared light reflected off Earth's surface. Because these instruments use spectroscopy, at each sounding footprint a spectrum is recorded—this means there is a significantly (about 1000×) more data to transfer than what would be required of just an RGB pixel. Changes in surface albedo and viewing angles may affect measurements, and satellites may employ different viewing modes over different locations; these may be accounted for in the algorithms used to convert raw into final measurements. As with other space-based instruments, space debris must be avoided to prevent damage.

Water vapor can dilute other gases in air and thus change the amount of CO2 in a column above the surface of the Earth, so often column-average dry-air mole fractions (XCO2) are reported instead. To calculate this, instruments may also measure O2, which is diluted similarly to other gases, or the algorithms may account for water and surface pressure from other measurements.[15] Clouds may interfere with accurate measurements so platforms may include instruments to measure clouds. Because of measurement imperfections and errors in fitting signals to obtain XCO2, space-based observations may also be compared with ground-based observations such as those from the TCCON.[16]

List of instruments

Instrument/satellite Primary institution(s) Service dates Approximate usable
daily soundings
Approximate
sounding size
Public data Notes Refs
HIRS-2/TOVS (NOAA-10) NOAA (U.S.) July 1987–
June 1991
100 × 100 km No Measuring CO2 was not an original mission goal [17]
IMG (ADEOS I) NASDA (Japan) 17 August 1996–
June 1997
50 8 × 8 km No FTS system [18]
SCIAMACHY (Envisat) ESA, IUP University of Bremen (Germany) 1 March 2002–
May 2012
5,000 30 × 60 km Yes[19] [20]
AIRS (Aqua) JPL (U.S.) 4 May 2002–
ongoing
18,000 90 × 90 km Yes[21] [22][23]
GOSAT JAXA (Japan) 23 January 2009–
ongoing
10,000 10.5 km diameter Yes[24] First dedicated high precision (<0.3%) mission, also measures CH4 [25][26]
OCO JPL (U.S.) 24 February 2009 100,000 1.3 × 2.2 km N/A Failed to reach orbit
OCO-2 JPL (U.S.) 2 July 2014–
ongoing
100,000 1.3 × 2.2 km Yes[27] High precision (<0.3%) [28]
GHGSat-D (or Claire) GHGSat (Canada) 21 June 2016–
ongoing
~2–5 images,
10,000+ pixels each
12 × 12 km,
50 m resolution image
Under validation,
expected release in 2017
CubeSat and imaging spectrometer [29]
TanSat (or CarbonSat) CAS (China) 21 December 2016–
ongoing
100,000 1 × 2 km Instrument testing and validation,
expected release late 2017
[30][31]
GMI (GaoFeng-5) CAS (China) expected June 2017 10.3 km diameter [32][33]
GOSAT-2 JAXA (Japan) expected Jan 2018 10,000+ 9.7 km diameter expected release in 2018 Will also measure CH4 and CO [34]
OCO-3 JPL (U.S.) expected Oct 2018 100,000 <4.5 × 4.5 km To be mounted on the ISS [35]
MicroCarb CNES (France) expected 2020 ~30,000 4.5 × 9 km Will likely also measure CH4 [36]
GeoCARB University of Oklahoma (U.S.) expected 2021 ~800,000 3 × 6 km First CO2-observing geosynchronous satellite, will also measure CH4 and CO [37][38]
GOSAT-3 JAXA (Japan) expected 2022

There have been other conceptual missions which have undergone initial evaluations but have not been chosen to become a part of space-based observing systems. These include:

References

  1. Schimel, David (November 2007). "Carbon cycle conundrums". Proceedings of the National Academy of Sciences. 104 (47): 18353–18354. Bibcode:2007PNAS..10418353S. doi:10.1073/pnas.0709331104.
  2. Schimel, David; Stephens, Britton B.; Fisher, Joshua B. (January 2015). "Effect of increasing CO2on the terrestrial carbon cycle". Proceedings of the National Academy of Sciences. 112 (2): 436–441. Bibcode:2015PNAS..112..436S. doi:10.1073/pnas.1407302112.
  3. Cox, Peter M.; Pearson, David; Booth, Ben B.; et al. (February 2013). "Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability". Nature. 494 (7437): 341–344. Bibcode:2013Natur.494..341C. doi:10.1038/nature11882.
  4. Kort, Eric A.; Frankenberg, Christian; Miller, Charles E.; et al. (September 2012). "Space-based observations of megacity carbon dioxide". Geophysical Research Letters. 39 (17). L17806. Bibcode:2012GeoRL..3917806K. doi:10.1029/2012GL052738.
  5. Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; et al. (April 2012). "Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT)". Geophysical Research Letters. 39 (8). Bibcode:2012GeoRL..39.8804H. doi:10.1029/2012GL051203.
  6. Hakkarainen, J.; Ialongo, I.; Tamminen, J. (November 2016). "Direct space-based observations of anthropogenic CO2 emission areas from OCO-2". Geophysical Research Letters. 43 (21): 11,400–11,406. Bibcode:2016GeoRL..4311400H. doi:10.1002/2016GL070885.
  7. Basu, S.; Guerlet, S.; Butz, A.; et al. (September 2013). "Global CO2 fluxes estimated from GOSAT retrievals of total column CO2". Atmospheric Chemistry and Physics. 13 (17): 8695–8717. Bibcode:2013ACP....13.8695B. doi:10.5194/acp-13-8695-2013.
  8. Deng, F.; Jones, D. B. A.; Henze, D. K.; et al. (April 2014). "Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data". Atmospheric Chemistry and Physics. 14 (7): 3703–3727. Bibcode:2014ACP....14.3703D. doi:10.5194/acp-14-3703-2014.
  9. Wunch, D.; Wennberg, P. O.; Messerschmidt, J.; et al. (September 2013). "The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions". Atmospheric Chemistry and Physics. 13 (18): 9447–9459. Bibcode:2013ACP....13.9447W. doi:10.5194/acp-13-9447-2013.
  10. Keppel-Aleks, G.; Wennberg, P. O.; O'Dell, C. W.; et al. (April 2013). "Towards constraints on fossil fuel emissions from total column carbon dioxide". Atmospheric Chemistry and Physics. 13 (8): 4349–4357. Bibcode:2013ACP....13.4349K. doi:10.5194/acp-13-4349-2013.
  11. Ross, Adrian N.; Wooster, Martin J.; Boesch, Hartmut; et al. (August 2013). "First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes". Geophysical Research Letters. 40 (15): 4098–4102. Bibcode:2013GeoRL..40.4098R. doi:10.1002/grl.50733.
  12. Silva, Sam J.; Arellano, Avelino F.; Worden, Helen M. (September 2013). "Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity". Geophysical Research Letters. 40 (18): 4971–4976. Bibcode:2013GeoRL..40.4971S. doi:10.1002/grl.50954.
  13. Heymann, J.; Reuter, M.; Buchwitz, M.; et al. (February 2017). "CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations". Geophysical Research Letters. doi:10.1002/2016GL072042.
  14. Patra, Prabir Kumar; Crisp, David; Kaiser, Johannes W.; et al. (14 December 2016). Orbiting Carbon Observatory (OCO-2) tracks increase of carbon release to the atmosphere during the 2014-2016 El Niño. 2016 AGU Fall Meeting. 12-16 December 2016. San Francisco, California.
  15. Wunch, D.; Toon, G. C.; Blavier, J.-F. L.; et al. (May 2011). "The Total Carbon Column Observing Network". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369 (1943): 2087–2112. Bibcode:2011RSPTA.369.2087W. doi:10.1098/rsta.2010.0240.
  16. Butz, A.; Guerlet, S.; Hasekamp, O.; et al. (July 2011). "Toward accurate CO2 and CH4 observations from GOSAT". Geophysical Research Letters. 38 (14). L14812. Bibcode:2011GeoRL..3814812B. doi:10.1029/2011GL047888.
  17. Chédin, A.; Serrar, S.; Scott, N. A.; et al. (September 2003). "First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical zone". Journal of Geophysical Research. 108 (D18). Bibcode:2003JGRD..108.4581C. doi:10.1029/2003JD003439.
  18. Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; et al. (November 1999). "Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation". Applied Optics. 38 (33): 6801–6807. Bibcode:1999ApOpt..38.6801K. doi:10.1364/AO.38.006801.
  19. "SCIAMACHY Data Products at IUP/IFE Bremen". IUP Bremen. Retrieved 28 January 2017.
  20. Buchwitz, M.; de Beek, R.; Burrows, J. P.; et al. (March 2005). "Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models". Atmospheric Chemistry and Physics. 5 (4): 941–962. doi:10.5194/acp-5-941-2005.
  21. "CO2 Documents". AIRS Version 5 Documentation. NASA / Goddard Space Flight Center. 19 November 2015. Retrieved 11 February 2017.
  22. Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; et al. (April 2008). "Retrieval of mid-tropospheric CO2 directly from AIRS measurements". Proceedings of the SPIE. 6966. 696613. Bibcode:2008SPIE.6966E..13O. doi:10.1117/12.777920.
  23. Chahine, M. T.; Chen, Luke; Dimotakis, Paul; et al. (September 2008). "Satellite remote sounding of mid-tropospheric CO2". Geophysical Research Letters. 35 (17). L17807. Bibcode:2008GeoRL..3517807C. doi:10.1029/2008GL035022.
  24. "GOSAT Data Archive Service (GDAS)". National Institute for Environmental Studies. Retrieved 28 January 2017.
  25. Kuze, Akihiko; Suto, Hiroshi; Nakajima, Masakatsu; et al. (December 2009). "Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring". Applied Optics. 48 (35). 6716. Bibcode:2009ApOpt..48.6716K. doi:10.1364/AO.48.006716.
  26. Kuze, Akihiko; Suto, Hiroshi; Shiomi, Kei; et al. (June 2016). "Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space". Atmospheric Measurement Techniques. 9 (6): 2445–2461. Bibcode:2016AMT.....9.2445K. doi:10.5194/amt-9-2445-2016.
  27. "CO2 Virtual Science Data Environment". NASA / Jet Propulsion Laboratory. Retrieved 11 February 2017.
  28. Eldering, Annmarie; O'Dell, Chris W.; Wennberg, Paul O.; et al. (February 2017). "The Orbiting Carbon Observatory-2: First 18 months of science data products". Atmospheric Measurement Techniques Discussions. 10 (2): 549–563. doi:10.5194/amt-10-549-2017.
  29. "GHGSat Global Emissions Monitoring". GHGSat. Retrieved 11 February 2017.
  30. Liu, Yi; Yang, DongXu; Cai, ZhaoNan (May 2013). "A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data". Chinese Science Bulletin. 58 (13): 1520–1523. doi:10.1007/s11434-013-5680-y.
  31. Liu, Jia (22 December 2016). "China Launches Satellite to Monitor Global Carbon Emissions". Chinese Academy of Sciences. Xinhua. Retrieved 11 February 2017.
  32. Chen, Liangfu (2016). Mission Overview GaoFeng-5 (PDF). CEOS-ACC-12 meeting. 13-15 October 2016. Seoul, Korea.
  33. Liu, Yi (2017). CO2 Monitoring from Space: TanSat and GF-5/GMI Mission Status (PDF). The 9th GEOSS Asia-Pacific Symposium. 11-13 January 2017. Tokyo, Japan.
  34. Matsunaga, T.; Maksyutov, S.; Morino, I.; et al. (2016). The Status of NIES GOSAT-2 Project and NIES Satellite Observation Center (PDF). 12th International Workshop on Greenhouse Gas Measurements from Space. 7-9 June 2016. Kyoto, Japan.
  35. Eldering, Annmarie; Worden, John (October 2016). "OCO-3 Science and Status for CEOS" (PDF). Committee on Earth Observation Satellites.
  36. Buisson, Francois; Pradines, Didier; Pascal, Veronique; et al. (9 June 2016). An Introduction to MicroCarb, First European Program for CO2 Monitoring (PDF). 12th International Workshop on Greenhouse Gas Measurements from Space. 7-9 June 2016. Kyoto, Japan.
  37. Polonsky, I. N.; O'Brien, D. M.; Kumer, J. B.; et al. (April 2014). "Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations". Atmospheric Measurement Techniques. 7 (4): 959–981. Bibcode:2014AMT.....7..959P. doi:10.5194/amt-7-959-2014.
  38. Moore, Berrien III; Crowell, Sean; Kawa, Stephan R.; et al. (9 June 2016). The GeoCARB Mission (PDF). 12th International Workshop on Greenhouse Gas Measurements from Space. 7-9 June 2016. Kyoto, Japan.
  39. Wang, J. S.; Kawa, S. R.; Eluszkiewicz, J.; et al. (December 2014). "A regional CO2 observing system simulation experiment for the ASCENDS satellite mission". Atmospheric Chemistry and Physics. 14 (23): 12897–12914. Bibcode:2014ACP....1412897W. doi:10.5194/acp-14-12897-2014.
  40. Key, Richard; Sander, Stanley; Eldering, Annmarie; et al. (2012). The Geostationary Fourier Transform Spectrometer. 2012 IEEE Aerospace Conference. 3-10 March 2012. Big Sky, Montana. doi:10.1109/AERO.2012.6187164.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.