Soft matter
Condensed matter physics |
---|
Phases · Phase transition · QCP |
Phase phenomena |
Electronic phases |
Electronic phenomena |
Magnetic phases |
Scientists Van der Waals · Onnes · von Laue · Bragg · Debye · Bloch · Onsager · Mott · Peierls · Landau · Luttinger · Anderson · Van Vleck · Mott · Hubbard · Shockley · Bardeen · Cooper · Schrieffer · Josephson · Louis Néel · Esaki · Giaever · Kohn · Kadanoff · Fisher · Wilson · von Klitzing · Binnig · Rohrer · Bednorz · Müller · Laughlin · Störmer · Tsui · Abrikosov · Ginzburg · Leggett |
Soft matter is a subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, liquid crystals, and a number of biological materials. These materials share an important common feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy. At these temperatures, quantum aspects are generally unimportant. Pierre-Gilles de Gennes, who has been called the "founding father of soft matter,"[1] received the Nobel Prize in physics in 1991 for discovering that methods developed for studying order phenomena in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of liquid crystals and polymers.[2] He is especially noted for inventing the concept of reptation.
Distinctive physics
Interesting behaviors arise from soft matter in ways that cannot be predicted, or are difficult to predict, directly from its atomic or molecular constituents. This is often because soft matter self-organizes into mesoscopic physical structures that are much larger than the microscopic scale (the arrangement of atoms and molecules), and yet are much smaller than the macroscopic (overall) scale of the material. The properties and interactions of these mesoscopic structures may determine the macroscopic behavior of the material. For example, the turbulent vortices that naturally occur within a flowing liquid are much smaller than the overall quantity of liquid and yet much larger than its individual molecules, and the emergence of these vortices control the overall flowing behavior of the material. Also, the bubbles that comprise a foam are mesoscopic because they individually consist of a vast number of molecules, and yet the foam itself consists of a great number of these bubbles, and the overall mechanical stiffness of the foam emerges from the combined interactions of the bubbles. By way of contrast, in hard condensed matter physics it is often possible to predict the overall behavior of a material because the molecules are organized into a crystalline lattice with no changes in the pattern at any mesoscopic scale.
Applications
Soft materials are important in a wide range of technological applications. They may appear as structural and packaging materials, foams and adhesives, detergents and cosmetics, paints, food additives, lubricants and fuel additives, rubber in tires, etc. In addition, a number of biological materials (blood, muscle, milk, yogurt, jello) are classifiable as soft matter. Liquid crystals, another category of soft matter, exhibit a responsivity to electric fields that make them very important as materials in display devices (LCDs). In spite of the various forms of these materials, many of their properties have common physicochemical origins, such as a large number of internal degrees of freedom, weak interactions between structural elements, and a delicate balance between entropic and enthalpic contributions to the free energy. These properties lead to large thermal fluctuations, a wide variety of forms, sensitivity of equilibrium structures to external conditions, macroscopic softness, and metastable states. Soft matters, such as polymers and lipids have found applications in nanotechnology as well.[3]
Research
The realization that soft matter contains innumerable examples of symmetry breaking, generalized elasticity, and many fluctuating degrees of freedom has re-invigorated classical fields of physics such as fluids (now generalized to non-Newtonian and structured media) and elasticity (membranes, filaments, and anisotropic networks are all important and have common aspects).
An important part of soft condensed matter research is biophysics. Soft condensed matter biophysics may be diverging into two distinct directions: a physical chemistry approach and a complex systems approach.
Journals
- Nature Physics
- Nature Materials
- Physical Review Letters
- Physical Review E
- Soft Matter
- Journal of Physics: Condensed Matter
- Journal of Chemical Physics
- Journal of Physical Chemistry Letters
- Journal of Physical Chemistry B
- Journal of Physical Chemistry C
- Macromolecules
- Langmuir
- European Physical Journal E
- Nano Letters
- ACS Nano
- Rubber Chemistry and Technology
Examples of soft matter physics
- Biological membranes
- Biomaterials
- Colloids
- Complex fluids
- Foams
- Gels
- Granular materials
- Liquids
- Liquid crystals
- Microemulsions
- Polymers
- Protein dynamics
- Protein structure
- Surfactants
See also
References
- I. Hamley, Introduction to Soft Matter (2nd edition), J. Wiley, Chichester (2000).
- R. A. L. Jones, Soft Condensed Matter, Oxford University Press, Oxford (2002).
- T. A. Witten (with P. A. Pincus), Structured Fluids: Polymers, Colloids, Surfactants, Oxford (2004).
- M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction, Springer (2003).
- M. Mitov, Sensitive Matter: Foams, Gels, Liquid Crystals and Other Miracles, Harvard University Press (2012).
- J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press (2010).
- A. V. Zvelindovksy (editor), Nanostructured Soft Matter - Experiment, Theory, Simulation and Perspectives, Springer/Dodrecht (2007), ISBN 978-1-4020-6329-9.
- M. Daoud, C.E. Williams (editors), Soft Matter Physics, Springer Verlag, Berlin (1999).
- Gerald H. Ristow, Pattern Formation in Granular Materials, Springer Tracts in Modern Physics, v. 161. Springer, Berlin (2000). ISBN 3-540-66701-6.
- de Gennes, Pierre-Gilles, Soft Matter, Nobel Lecture, December 9, 1991.
- S. A. Safran,Statistical thermodynamics of surfaces, interfaces and membranes, Westview Press (2003)
- R.G. Larson, "The Structure and Rheology of Complex Fluids," Oxford University Press (1999)
- ↑ Rheology Bulletin Volume 74 Number 2 July 2005, p. 17
- ↑ "The Nobel Prize in Physics 1991". Retrieved January 27, 2008.
- ↑ Mashaghi S.; Jadidi T.; Koenderink G.; Mashaghi A. (2013). "Lipid Nanotechnology". Int. J. Mol. Sci. 14 (2): 4242–4282. PMC 3588097 . PMID 23429269. doi:10.3390/ijms14024242.
External links
- Pierre-Gilles de Gennes' Nobel Lecture
- American Physical Society Topical Group on Soft Matter (GSOFT)
- Softmatterworld.org
- Softmatterresources.com
- SklogWiki - a wiki dedicated to simple liquids, complex fluids, and soft condensed matter.
- Harvard School of Engineering and Applied Sciences Soft Matter Wiki - organizes, reviews, and summarizes academic papers on soft matter.
- Soft Matter Engineering - A group dedicated to Soft Matter Engineering at the University of Florida
- Google Scholar page on soft matter