SGLT2

SLC5A2
Identifiers
AliasesSLC5A2, SGLT2, solute carrier family 5 member 2
External IDsOMIM: 182381 MGI: 2181411 HomoloGene: 2289 GeneCards: SLC5A2
Gene location (Human)
Chr.Chromosome 16 (human)[1]
BandNo data availableStart31,483,002 bp[1]
End31,490,860 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

6524

246787

Ensembl

ENSG00000140675

ENSMUSG00000030781

UniProt

P31639

Q923I7

RefSeq (mRNA)

NM_003041

NM_133254

RefSeq (protein)

NP_003032

NP_573517

Location (UCSC)Chr 16: 31.48 – 31.49 MbChr 16: 128.27 – 128.27 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 (solute carrier family 5 (sodium/glucose cotransporter)) gene.[5]

Function

SGLT2 is a member of the sodium glucose cotransporter family which are sodium-dependent glucose transport proteins. SGLT2 is the major cotransporter involved in glucose reabsorption in the kidney.[6]

SGLT2 inhibitors for diabetes

SGLT2 inhibitors are called gliflozins. They lead to a reduction in blood glucose levels. Therefore, SGLT2 inhibitors have potential use in the treatment of type II diabetes. Gliflozins enhance glycemic control as well as reduce body weight and systolic and diastolic blood pressure.[7] The gliflozins canagliflozin, dapagliflozin, and empagliflozin may lead to euglycemic ketoacidosis.[8] Other side effects of gliflozins include increased risk of (generally mild) urinary tract infections, candidal vulvovaginitis.[9]

Clinical significance

Mutations in this gene are also associated with renal glucosuria.[10]

Model organisms

Model organisms have been used in the study of SLC5A2 function. A conditional knockout mouse line, called Slc5a2tm1a(KOMP)Wtsi[16][17] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[18][19][20]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[14][21] Twenty two tests were carried out on homozygous mutant mice and one significant abnormality was observed: males displayed increased drinking behaviour.[14]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000140675 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030781 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Wells RG, Mohandas TK, Hediger MA (Sep 1993). "Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere". Genomics. 17 (3): 787–9. PMID 8244402. doi:10.1006/geno.1993.1411.
  6. "Entrez Gene: solute carrier family 5 (sodium/glucose cotransporter)".
  7. Haas B, Eckstein N, Pfeifer V, Mayer P, Hass MD (2014). "Efficacy, safety and regulatory status of SGLT2 inhibitors: focus on canagliflozin". Nutrition & Diabetes. 4 (11): e143. PMC 4259905Freely accessible. PMID 25365416. doi:10.1038/nutd.2014.40.
  8. "FDA Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood". Food and Drug Administration, USA. 2015-05-15.
  9. "SGLT2 Inhibitors (Gliflozins)". Diabetes.co.uk. Retrieved 2015-05-19.
  10. Calado J, Loeffler J, Sakallioglu O, Gok F, Lhotta K, Barata J, Rueff J (Mar 2006). "Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting". Kidney International. 69 (5): 852–5. PMID 16518345. doi:10.1038/sj.ki.5000194.
  11. "Indirect calorimetry data for Slc5a2". Wellcome Trust Sanger Institute.
  12. "Salmonella infection data for Slc5a2". Wellcome Trust Sanger Institute.
  13. "Citrobacter infection data for Slc5a2". Wellcome Trust Sanger Institute.
  14. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  15. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  16. "International Knockout Mouse Consortium".
  17. "Mouse Genome Informatics".
  18. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163.
  19. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a.
  20. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018.
  21. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. PMC 3218837Freely accessible. PMID 21722353. doi:10.1186/gb-2011-12-6-224.

Further reading

  • van den Heuvel LP, Assink K, Willemsen M, Monnens L (Dec 2002). "Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2)". Human Genetics. 111 (6): 544–7. PMID 12436245. doi:10.1007/s00439-002-0820-5. 
  • Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JH, Kemper M, Li Volti S, Neuhaus T, Skovby F, Swift PG, Schaub J, Klaerke D (Nov 2003). "Molecular analysis of the SGLT2 gene in patients with renal glucosuria". Journal of the American Society of Nephrology. 14 (11): 2873–82. PMID 14569097. doi:10.1097/01.asn.0000092790.89332.d2. 
  • Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (Sep 1992). "Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter". The American Journal of Physiology. 263 (3 Pt 2): F459–65. PMID 1415574. 
  • Calado J, Sznajer Y, Metzger D, Rita A, Hogan MC, Kattamis A, Scharf M, Tasic V, Greil J, Brinkert F, Kemper MJ, Santer R (Dec 2008). "Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion". Nephrology, Dialysis, Transplantation. 23 (12): 3874–9. PMID 18622023. doi:10.1093/ndt/gfn386. 
  • Calado J, Soto K, Clemente C, Correia P, Rueff J (Feb 2004). "Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria". Human Genetics. 114 (3): 314–6. PMID 14614622. doi:10.1007/s00439-003-1054-x. 
  • Magen D, Sprecher E, Zelikovic I, Skorecki K (Jan 2005). "A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomal-recessive renal glucosuria and aminoaciduria". Kidney International. 67 (1): 34–41. PMID 15610225. doi:10.1111/j.1523-1755.2005.00053.x. 
  • Castaneda F, Burse A, Boland W, Kinne RK (2007). "Thioglycosides as inhibitors of hSGLT1 and hSGLT2: potential therapeutic agents for the control of hyperglycemia in diabetes". International Journal of Medical Sciences. 4 (3): 131–9. PMC 1868657Freely accessible. PMID 17505558. doi:10.7150/ijms.4.131. 
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.