Sobolev inequality

In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev.

Sobolev embedding theorem

Let Wk,p(Rn) denote the Sobolev space consisting of all real-valued functions on Rn whose first k weak derivatives are functions in Lp. Here k is a non-negative integer and 1 ≤ p < ∞. The first part of the Sobolev embedding theorem states that if k > and 1 ≤ p < q < ∞ are two real numbers such that (k)p < n and:

then

and the embedding is continuous. In the special case of k = 1 and = 0, Sobolev embedding gives

where p is the Sobolev conjugate of p, given by

This special case of the Sobolev embedding is a direct consequence of the Gagliardo–Nirenberg–Sobolev inequality.

The second part of the Sobolev embedding theorem applies to embeddings in Hölder spaces Cr,α(Rn). If (krα)/n = 1/p with α ∈ (0, 1] and n < p, then one has the embedding

This part of the Sobolev embedding is a direct consequence of Morrey's inequality. Intuitively, this inclusion expresses the fact that the existence of sufficiently many weak derivatives implies some continuity of the classical derivatives.

Generalizations

The Sobolev embedding theorem holds for Sobolev spaces Wk,p(M) on other suitable domains M. In particular (Aubin 1982, Chapter 2; Aubin 1976), both parts of the Sobolev embedding hold when

Kondrachov embedding theorem

On a compact manifold with C1 boundary, the Kondrachov embedding theorem states that if k > and kn/p > n/q then the Sobolev embedding

is completely continuous (compact).

Gagliardo–Nirenberg–Sobolev inequality

Assume that u is a continuously differentiable real-valued function on Rn with compact support. Then for 1 p < n there is a constant C depending only on n and p such that

with 1/p* = 1/p - 1/n. The case is due to Sobolev, to Gagliardo and Nirenberg independently. The Gagliardo–Nirenberg–Sobolev inequality implies directly the Sobolev embedding

The embeddings in other orders on Rn are then obtained by suitable iteration.

Hardy–Littlewood–Sobolev lemma

Sobolev's original proof of the Sobolev embedding theorem relied on the following, sometimes known as the Hardy–Littlewood–Sobolev fractional integration theorem. An equivalent statement is known as the Sobolev lemma in (Aubin 1982, Chapter 2). A proof is in (Stein, Chapter V, §1.3).

Let 0 < α < n and 1 < p < q < ∞. Let Iα = (−Δ)α/2 be the Riesz potential on Rn. Then, for q defined by

there exists a constant C depending only on p such that

If p = 1, then one has two possible replacement estimates. The first is the more classical weak-type estimate:

where 1/q = 1 − α/n. Alternatively one has the estimate

where is the vector-valued Riesz transform, c.f. (Schikorra, Spector & Van Schaftingen). Interestingly the boundedness of the Riesz transforms implies that the latter inequality gives a unified way to write the family of inequalities for the Riesz potential.

The Hardy–Littlewood–Sobolev lemma implies the Sobolev embedding essentially by the relationship between the Riesz transforms and the Riesz potentials.

Morrey's inequality

Assume n < p ≤ ∞. Then there exists a constant C, depending only on p and n, such that

for all uC1(Rn) ∩ Lp(Rn), where

Thus if uW1,p(Rn), then u is in fact Hölder continuous of exponent γ, after possibly being redefined on a set of measure 0.

A similar result holds in a bounded domain U with C1 boundary. In this case,

where the constant C depends now on n, p and U. This version of the inequality follows from the previous one by applying the norm-preserving extension of W1,p(U) to W1,p(Rn).

General Sobolev inequalities

Let U be a bounded open subset of Rn, with a C1 boundary. (U may also be unbounded, but in this case its boundary, if it exists, must be sufficiently well-behaved.) Assume uWk,p(U), then we consider two cases:

k < n/p

In this case uLq(U), where

We have in addition the estimate

,

the constant C depending only on k, p, n, and U.

k > n/p

Here, u belongs to a Hölder space, more precisely:

where

We have in addition the estimate

the constant C depending only on k, p, n, γ, and U.

Case

If , then u is a function of bounded mean oscillation and

for some constant C depending only on n. This estimate is a corollary of the Poincaré inequality.

Nash inequality

The Nash inequality, introduced by John Nash (1958), states that there exists a constant C > 0, such that for all uL1(Rn) ∩ W1,2(Rn),

The inequality follows from basic properties of the Fourier transform. Indeed, integrating over the complement of the ball of radius ρ,

 

 

 

 

(1)

by Parseval's theorem. On the other hand, one has

which, when integrated over the ball of radius ρ gives

 

 

 

 

(2)

where ωn is the volume of the n-ball. Choosing ρ to minimize the sum of (1) and (2) and again applying Parseval's theorem:

gives the inequality.

In the special case of n = 1, the Nash inequality can be extended to the Lp case, in which case it is a generalization of the Gagliardo-Nirenberg-Sobolev inequality (Brezis 2011, Comments on Chapter 8). In fact, if I is a bounded interval, then for all 1 ≤ r < ∞ and all 1 ≤ qp < ∞ the following inequality holds

where:

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.