Snowmaking

Snow production at Camelback Ski Area, United States.

Snowmaking is the production of snow by forcing water and pressurized air through a "snow gun," also known as a "snow cannon", on ski slopes. Snowmaking is mainly used at ski resorts to supplement natural snow. This allows ski resorts to improve the reliability of their snow cover and to extend their ski seasons from late autumn to early spring. Indoor ski slopes often use snowmaking. They can generally do so year-round as they have a climate-controlled environment.

The production of snow requires low temperatures. The threshold temperature for snowmaking increases as humidity decreases. Wet bulb temperature is used as a metric since it takes air temperature and relative humidity into account. Snowmaking is a relatively expensive process in its energy use, thereby limiting its use.

History

Art Hunt, Dave Richey, and Wayne Pierce invented the snow cannon in 1950,[1][2] but secured a patent sometime later.[3] In 1952, Grossinger's Catskill Resort Hotel became the first in the world to use artificial snow.[4] Snowmaking began to be used extensively in the early 1970s. Many ski resorts depend heavily upon snowmaking.

Snowmaking has achieved greater efficiency with increasing complexity. Traditionally, snowmaking quality depended upon the skill of the equipment operator. Computer control supplements that skill with greater precision, such that a snow gun operates only when snowmaking is optimal. All-weather snowmakers have been developed by IDE.[5]

Operation

A graph of air temperature against relative humidity: if conditions are below the curve, snow can be made.

The key considerations in snow production are increasing water and energy efficiency and increasing the environmental window in which snow can be made.

Snowmaking plants require water pumps and sometimes air compressors when using lances, that are both very large and expensive. The energy required to make artificial snow is about 0.6 - 0.7 kW h/m³ for lances and 1 - 2 kW h/m³ for fan guns. The density of artificial snow is between 400 and 500 kg/m³ and the water consumption for producing snow is roughly equal to that number.[6]

Snowmaking begins with a water supply such as a river or reservoir. Water is pushed up a pipeline on the mountain using very large electric pumps in a pump house. This water is distributed through an intricate series of valves and pipes to any trails that require snowmaking. Many resorts also add a nucleating agent to ensure that as much water as possible freezes and turns into snow. These products are organic or inorganic materials that facilitate the water molecules to form the proper shape to freeze into ice crystals. The products are non-toxic and biodegradable.

Pump House & Air Plant Combo

The next step in the snowmaking process is to add air using an air plant. This plant is often a building which contains electric or diesel industrial air compressors the size of a van or truck. However, in some instances air compression is provided using diesel-powered, portable trailer-mounted compressors which can be added to the system. Many fan-type snow guns have on-board electric air compressors, which allows for cheaper, and more compact operation. A ski area may have the required high-output water pumps, but not an air pump. Onboard compressors are cheaper and easier than having a dedicated pumping house. The air is generally cooled and excess moisture is removed before it is sent out of the plant. Some systems even cool the water before it enters the system. This improves the snowmaking process as the less heat in the air and water, the less heat must be dissipated to the atmosphere to freeze the water. From this plant the air travels up a separate pipeline following the same path as the water pipeline.

Ice nucleation-active proteins

The water is sometimes mixed with ina (ice nucleation-active) proteins from the bacterium Pseudomonas syringae. These proteins serve as effective nuclei to initiate the formation of ice crystals at relatively high temperatures, so that the droplets will turn into ice before falling to the ground. The bacterium itself uses these ina proteins in order to injure plants.[7]

Infrastructure

Piping Diagram

The pipes following the trails are equipped with shelters containing hydrants, electrical power and, optionally, communication lines mounted. Whereas shelters for fan guns require only water, power and maybe communication, lance-shelters usually need air hydrants as well. Hybrid shelters allow maximum flexibility to connect each snow machine type as they have all supplies available. The typical distance for lance shelters is 100–150 feet (30–46 m), for fan guns 250–300 feet (76–91 m). From these hydrants 1 12"–2" pressure resistant hoses are connected similar to fire hoses with camlocks to the snow machine.

Snowmaking guns

Rear view of snow cannon at Mölltaler Gletscher, Austria, showing the powerful fan.

There are many forms of snowmaking guns; however, they all share the basic principle of combining air and water to form snow. For most guns the type or "quality" of snow can be changed by regulating the amount of water in the mixture. For others, the water and air are simply on or off and the snow quality is determined by the air temperature and humidity.

In general there are three types of snowmaking guns: Internal Mixing, External Mixing and Fan Guns. These come in two main styles of makers: air water guns and fan guns.

An air water gun can be mounted on a tower or on a stand on the ground. It uses higher pressure water and air, while a fan gun uses a powerful axial fan to propel the water jet to a great distance.

A modern snow fan usually consists of one or more rings of nozzles which inject water into the fan air stream. A separate nozzle or small group of nozzles is fed with a mix of water and compressed air and produces the nucleation points for the snow crystals. The small droplets of water and the tiny ice crystals are then mixed and propelled out by a powerful fan, after which they further cool through evaporation in the surrounding air as they fall to the ground. The crystals of ice act as seeds to make the water droplets freeze at 0 °C (32 °F). Without these crystals the water would supercool instead of freezing. This method can produce snow when the wet-bulb temperature of the air is as high as -1 °C (30.2 °F).[8][9] The lower the air temperature is, the more and the better snow a cannon can make. This is one of the main reasons snow cannons are usually operated in the night. The quality of the mixing of the water and air streams and their relative pressures is crucial to the amount of snow made and its quality.

Modern snow cannons are fully computerized and can operate autonomously or be remotely controlled from a central location. Operational parameters are: starting and stopping time, quality of snow, maximum wet-bulb temperature in which to operate, maximum windspeed, horizontal and vertical orientation, and sweep angle (to cover a wider or narrower area). Sweep angle and area may follow wind direction.

Snow Lance used at Flottsbro in Stockholm

Home snowmaking

Smaller versions of the snow machines found at ski resorts exist, scaled down to run off household size air and water supplies. Home snowmakers receive their water supply either from a garden hose or from a pressure washer, which makes more snow per hour. Plans also exist for do-it-yourself snowmaking machines made out of plumbing fittings and special nozzles.

Volumes of snow output by home snowmakers depend on the air/water mixture, temperature, wind variations, pumping capacity, water supply, air supply, and other factors. Using a household spray bottle will not work unless temperatures are well below the freezing point of water.

Other uses

In Swedish, the phrase "snow cannon" (Snökanon) is used to designate the Lake-effect snow weather phenomenon. For example, if the Baltic sea is not yet frozen in January, cold winds from Siberia may lead to significant snowfall.

See also

References

  1. Selingo, Jeffrey (2001-02-02). "Machines Let Resorts Please Skiers When Nature Won't". New York Times. Retrieved 2010-05-23.
  2. "Making Snow". About.com. Retrieved 2006-12-16.
  3. US patent 2676471, W. M. Pierce, Jr., "Method for Making and Distributing Snow", issued 1950-12-14
  4. On This Day: March 25, BBC News, accessed December 20, 2006. "The first artificial snow was made two years later, in 1952, at Grossinger's resort in New York, USA. "
  5. http://www.ide-snowmaker.com/
  6. Jörgen Rogstam & Mattias Dahlberg (April 1, 2011), Energy usage for snowmaking (PDF)
  7. Robbins, Jim (May 24, 2010), "From Trees and Grass, Bacteria That Cause Snow and Rain", The New York Times
  8. Liu, Xiaohong (2012). "What processes control ice nucleation and its impact on ice-containing clouds?" (PDF). Pacific Northwest National Library. Retrieved 2016-11-23.
  9. Kim, H. K. (1987-07-07). "Xanthomonas campestris pv. translucens Strains Active in Ice Nucleation" (PDF). The American Phytopathological Society. Retrieved 2016-11-23.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.