Scoring algorithm

Scoring algorithm, also known as Fisher's scoring,[1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher.

Sketch of Derivation

Let be random variables, independent and identically distributed with twice differentiable p.d.f. , and we wish to calculate the maximum likelihood estimator (M.L.E.) of . First, suppose we have a starting point for our algorithm , and consider a Taylor expansion of the score function, , about :

where

is the observed information matrix at . Now, setting , using that and rearranging gives us:

We therefore use the algorithm

and under certain regularity conditions, it can be shown that .

Fisher scoring

In practice, is usually replaced by , the Fisher information, thus giving us the Fisher Scoring Algorithm:

.

See also

References

  1. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects

Jennrich, R. I., & Sampson, P. F. (1976). Newton-Raphson and related algorithms for maximum likelihood variance component estimation. Technometrics, 18, 11-17.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.