Sauria

Saurians
Temporal range: GuadalupianPresent, 265.8–0 Ma
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Neodiapsida
Clade: Sauria
Macartney, 1802
Groups

The clade Sauria was traditionally a suborder for lizards which originally (before 1800) comprised crocodilians too. It has been redefined as the group containing the most recent common ancestor of archosaurs and lepidosaurs and all its descendants;[1] as such it was commonly thought that Sauria is a crowned-base grouping of diapsids.[2] However, recent genomic studies[3][4][5] and comprehensive studies in the fossil record[6] suggest that turtles are closely related to archosaurs, not to parareptiles as previously thought. As such Sauria can be seen as a crowned-group of all modern reptiles (including birds) within the larger total group Sauropsida, which also contains various stem-reptile groups.

Systematics

Synapomorphies

The synapomorphies or characters that unite the clade Sauria also help them be distinguished from stem-saurians in Diapsida or stem-reptiles in clade Sauropsida in the following categories based on the following regions of the body.[7][8][9]

However, some of these characters might be lost or modified in several lineages, particularly among birds and turtles; it is best to see these characters as the ancestral features that were present in the ancestral saurian.[7]

Phylogeny

The cladogram shown below follows the most likely result found by an analysis of turtle relationships using both fossil and genetic evidence by M.S. Lee, in 2013. This study found Eunotosaurus, usually regarded as a turtle relative, to be only very distantly related to turtles in the clade Parareptilia.[6]


Diapsida


Araeoscelidia


Neodiapsida


Claudiosaurus




Younginiformes


Sauria


Lepidosauromorpha


 Archosauromorpha  (=Archelosauria)



Choristodera





Trilophosaurus



Rhynchosauria




Archosauriformes




 Pantestudines 


Eosauropterygia




Placodontia




Sinosaurosphargis




Odontochelys


 Testudinata 


Proganochelys



Testudines (turtles)













The cladogram below follows the most likely result found by another analysis of turtle relationships, this one using only fossil evidence, published by Rainer Schoch and Hans-Dieter Sues in 2015. This study found Eunotosaurus to be an actual early stem-turtle, though other versions of the analysis found weak support for it as a parareptile.[10]

Sauria  (=Archelosauria)


Archosauromorpha


 Lepidosauromorpha  (=Ankylopoda)




Kuehneosauridae


Lepidosauria


Squamata



Rhynchocephalia




 Pantestudines 

Sauropterygia


Eosauropterygia




Sinosaurosphargis



Placodontia






Eunotosaurus




Pappochelys




Odontochelys


 Testudinata 


Proganochelys



Testudines










References

  1. Gauthier, J. A., Kluge, A. G., & Rowe, T. (1988). The early evolution of the Amniota. The phylogeny and classification of the tetrapods, 1, 103-155.
  2. Ezcurra, M. D.; Scheyer, T. M.; Butler, R. J. (2014). "The origin and early evolution of Sauria: reassessing the Permian saurian fossil record and the timing of the crocodile-lizard divergence". PLOS ONE. 9 (2): e89165. PMC 3937355Freely accessible. PMID 24586565. doi:10.1371/journal.pone.0089165.
  3. Wang, Zhuo (27 March 2013). "The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan". Nature Genetics. 45 (701–706): 701–6. PMC 4000948Freely accessible. PMID 23624526. doi:10.1038/ng.2615. Retrieved 15 November 2013.
  4. Crawford, Nicholas G., et al. "More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs." Biology letters 8.5 (2012): 783-786.
  5. Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. PMC 4405904Freely accessible. PMID 25504713. doi:10.1126/science.1253451.
  6. 1 2 Lee, M. S. Y. (2013). "Turtle origins: Insights from phylogenetic retrofitting and molecular scaffolds". Journal of Evolutionary Biology. 26 (12): 2729–2738. PMID 24256520. doi:10.1111/jeb.12268.
  7. 1 2 Pough, F. H., Janis, C. M., & Heiser, J. B. (2005). Vertebrate life. Pearson/Prentice Hall.
  8. Laurin, Michel and Jacques A. Gauthier. 2011. Diapsida. Lizards, Sphenodon, crocodylians, birds, and their extinct relatives. Version 20 April 2011. http://tolweb.org/Diapsida/14866/2011.04.20 in The Tree of Life Web Project, http://tolweb.org/
  9. Laurin, Michel and Jacques A. Gauthier. 2011. Autapomorphies of Diapsid Clades. Version 20 April 2011. http://tolweb.org/accessory/Autapomorphies_of_Diapsid_Clades?acc_id=465 in The Tree of Life Web Project, http://tolweb.org/
  10. Schoch, Rainer R.; Sues, Hans-Dieter (24 June 2015). "A Middle Triassic stem-turtle and the evolution of the turtle body plan". Nature. 523: 584–587. PMID 26106865. doi:10.1038/nature14472. (Subscription required (help)).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.