Saturated set

In mathematics, in particular in topology, a subset of a topological space (X, τ) is saturated if it is an intersection of open subsets of X. In a T1 space every set is saturated.

Saturated sets can also be defined in terms of surjections: let p : XY be a surjection; a subset C of X is called saturated with respect to p if for every p−1(A) that intersects C, p−1(A) is contained in C. This is equivalent to the statement that p−1p(C)=C.

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.