SMURF1
E3 ubiquitin-protein ligase SMURF1 is an enzyme that in humans is encoded by the SMURF1 gene.[5][6]
Function
This gene encodes a ubiquitin ligase that is specific for receptor-regulated SMAD proteins in the bone morphogenetic protein (BMP) pathway. A similar protein in Xenopus is involved in embryonic pattern formation. Alternative splicing results in multiple transcript variants encoding different isoforms. An additional transcript variant has been identified, but its full length sequence has not been determined.[6]
Interactions
SMURF1 has been shown to interact with:
References
- 1 2 3 ENSG00000198742 GRCh38: Ensembl release 89: ENSG00000284126, ENSG00000198742 - Ensembl, May 2017
- 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038780 - Ensembl, May 2017
- ↑ "Human PubMed Reference:".
- ↑ "Mouse PubMed Reference:".
- ↑ Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (Sep 1999). "A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation". Nature. 400 (6745): 687–93. PMID 10458166. doi:10.1038/23293.
- 1 2 "Entrez Gene: SMURF1 SMAD specific E3 ubiquitin protein ligase 1".
- ↑ Yamaguchi K, Ohara O, Ando A, Nagase T (Apr 2008). "Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway". Biol. Chem. 389 (4): 405–13. PMID 18208356. doi:10.1515/BC.2008.036.
- ↑ Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F (Aug 2008). "Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1". Nat. Cell Biol. 10 (8): 994–1002. PMID 18641638. doi:10.1038/ncb1760.
- ↑ Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T (Dec 2008). "Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells". J. Biol. Chem. 283 (51): 35660–7. PMID 18927080. doi:10.1074/jbc.M710496200.
Further reading
- Wrana JL, Attisano L (2000). "The Smad pathway". Cytokine Growth Factor Rev. 11 (1–2): 5–13. PMID 10708948. doi:10.1016/S1359-6101(99)00024-6.
- Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. PMID 8619474. doi:10.1006/abio.1996.0138.
- Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (1997). "Large-scale concatenation cDNA sequencing". Genome Res. 7 (4): 353–8. PMC 139146 . PMID 9110174. doi:10.1101/gr.7.4.353.
- Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O (2001). "Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (4): 273–81. PMID 10997877. doi:10.1093/dnares/7.4.271.
- Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001). "Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation". J. Biol. Chem. 276 (16): 12477–80. PMID 11278251. doi:10.1074/jbc.C100008200.
- Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K (2002). "Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane". J. Biol. Chem. 277 (42): 39919–25. PMID 12151385. doi:10.1074/jbc.M201901200.
- Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T (2003). "Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-beta signaling by Smad7". J. Biol. Chem. 278 (12): 10716–21. PMID 12519765. doi:10.1074/jbc.M212663200.
- Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, Miyazono K (2004). "Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7". EMBO J. 22 (24): 6458–70. PMC 291827 . PMID 14657019. doi:10.1093/emboj/cdg632.
- Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003). "Regulation of cell polarity and protrusion formation by targeting RhoA for degradation". Science. 302 (5651): 1775–9. PMID 14657501. doi:10.1126/science.1090772.
- Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004). "Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts". J. Clin. Invest. 113 (2): 253–64. PMC 310747 . PMID 14722617. doi:10.1172/JCI16269.
- Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC (2004). "Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation". J. Biol. Chem. 279 (28): 29409–17. PMID 15138260. doi:10.1074/jbc.M313120200.
- Shearwin-Whyatt LM, Brown DL, Wylie FG, Stow JL, Kumar S (2005). "N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking". J. Cell. Sci. 117 (Pt 16): 3679–89. PMID 15252135. doi:10.1242/jcs.01212.
- Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M (2005). "Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth". FEBS Lett. 579 (5): 1015–9. PMID 15710384. doi:10.1016/j.febslet.2004.12.074.
- Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science. 307 (5715): 1621–5. PMID 15761153. doi:10.1126/science.1105776.
This article is issued from
Wikipedia.
The text is licensed under Creative Commons - Attribution - Sharealike.
Additional terms may apply for the media files.