RoGFP

The reduction-oxidation sensitive green fluorescent protein (roGFP) is a redox sensitive biosensor. Two cysteines were introduced into the beta barrel structure of the GFP. The oxidation state (reduced dithiol or the oxidized disulfide) of the engineered thiols determines the fluorescence properties of the sensor.[1] Originally, different roGFP versions were presented to allow the in vivo imaging of reducing compartments such as the cytosol (roGFP2). The cysteines introduced at the amino acid positions 147 and 204 produced the most robust results.[2] roGFP2 preferentially interacts with glutaredoxins and therefore reports the cellular glutathione redox potential.[3] The specificity of roGFP2 for glutathione is further increased by linking it to the human glutaredoxin 1 (Grx1).[4] By expressing the Grx1-roGFP fusion sensors in the organism of interest and/or targeting the protein to a cellular compartment, it is possible to measure the glutathione redox potential in a specific cellular compartment in real-time and therefore provides major advantages compared to other invasive static methods e.g. HPLC.

In addition, roGFPs are used to investigate the topology of ER proteins, or to analyze the ROS production capacity of chemicals.[5] [6]

See also

References

  1. Hanson GT; Aggeler R; Oglesbee D; Cannon M; Capaldi RA; Tsien RY; Remington SJ (2004). "Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators". J Biol Chem. 279 (13): 13044–53. PMID 14722062. doi:10.1074/jbc.M312846200.
  2. Schwarzlander M.; Fricker; M.D., Muller; C., Marty; L., Brach; T., Novak; J., Sweetlove; L.J., Hell, R.; et al. (2008). "Confocal imaging of glutathione redox potential in living plant cells". J Microsc. 231 (2): 299–316. PMID 18778428. doi:10.1111/j.1365-2818.2008.02030.x.
  3. Meyer, A.J.; Brach, T.; Marty, L.; Kreye, S.; Rouhier, N.; Jacquot, J.P. & Hell, R. (2007). "Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer". Plant J. 52 (5): 973–86. PMID 17892447. doi:10.1111/j.1365-313X.2007.03280.x.
  4. Gutscher, M.; Pauleau, A.L.; Marty, L.; Brach, T.; Wabnitz, G.H.; Samstag, Y.; Meyer, A.J. & Dick, T.P. (2008). "Real-time imaging of the intracellular glutathione redox potential". Nat Methods. 5 (6): 553–559. PMID 18469822. doi:10.1038/NMETH.1212.
  5. Brach T; Soyk S; Müller C; Hinz G; Hell R; Brandizzi F; Meyer AJ (2009). "Non-invasive topology analysis of membrane proteins in the secretory pathway". Plant J. 57 (3): 534–41. PMID 18939964. doi:10.1111/j.1365-313X.2008.03704.x.
  6. Schwarzländer M; Fricker MD; Sweetlove LJ (2009). "Monitoring the in vivo redox state of plant mitochondria: Effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge". Biochim Biophys Acta. 1787 (5): 468–75. PMID 19366606. doi:10.1016/j.bbabio.2009.01.020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.