Sinorhizobium meliloti
Sinorhizobium meliloti | |
---|---|
Sinorhizobium meliloti strain Rm1021 on an agar plate. | |
Scientific classification | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Alpha Proteobacteria |
Order: | Rhizobiales |
Family: | Rhizobiaceae |
Genus: | Sinorhizobium |
Species: | S. meliloti |
Binomial name | |
Sinorhizobium meliloti (Dangeard 1926) De Lajudie et al. 1994, comb. nov. | |
Type strain | |
ATCC 9930 CCUG 27879 | |
biovars | |
Synonyms | |
|
Sinorhizobium meliloti is a Gram-negative nitrogen-fixing bacterium (rhizobium). It forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis results in a new plant organ termed a root nodule. The S. meliloti genome contains three replicons: a chromosome (~3.7 megabases), one chromid,[9] pSymB (~1.7 megabases), and one megaplasmid pSymA (~1.4 megabases). Five S. meliloti genomes have been sequenced to date: Rm1021,[10] AK83,[11] BL225C,[11] Rm41,[12] and SM11[13]
Nitrogen fixation by S meliloti is interfered with by the plastic modifier bisphenol A.[14]
Symbiosis
The symbiosis between S. meliloti and its plant hosts begins when the plant secretes an array of betaines and flavonoids into the rhizosphere: 4,4′-dihydroxy-2′-methoxychalcone,[15] chrysoeriol,[16] cynaroside,[16] 4′,7-dihydroxyflavone,[15] 6′′-O-malonylononin,[17] liquiritigenin,[15] luteolin,[18] 3′,5-dimethoxyluteolin,[16] 5-methoxyluteolin,[16] medicarpin,[17] stachydrine,[19] and trigonelline.[19] These compounds attract S. meliloti to the surface of the root hairs of the plant where the bacteria begin secreting nod factor.
Bacteriophage
Several bacteriophages that infect Sinorhizobium meliloti have been described:[20] Φ1,[21] Φ1A,[22] Φ2A,[22] Φ3A,[23] Φ4 (=ΦNM8),[24] Φ5t (=ΦNM3),[24] Φ6 (=ΦNM4),[24] Φ7 (=ΦNM9),[24] Φ7a,[21] Φ9 (=ΦCM2),[24] Φ11 (=ΦCM9),[24] Φ12 (=ΦCM6),[24] Φ13,[25] Φ16,[25] Φ16-3,[26] Φ16a,[25] Φ16B,[23] Φ27,[21] Φ32,[26] Φ36,[26] Φ38,[26] Φ43,[21] Φ70,[21] Φ72,[26] Φ111,[26] Φ143,[26] Φ145,[26] Φ147,[26] Φ151,[26] Φ152,[26] Φ160,[26] Φ161,[26] Φ166,[26] Φ2011,[27] ΦA3,[21] ΦA8,[21] ΦA161,[27] ΦAL1,[28] ΦCM1,[27] ΦCM3,[27] ΦCM4,[27] ΦCM5,[27] ΦCM7,[27] ΦCM8,[27] ΦCM20,[27] ΦCM21,[27] ΦDF2,[28] Φf2D,[28] ΦF4,[29] ΦFAR,[28] ΦFM1,[27] ΦK1,[30] ΦL1,[25] ΦL3,[25] ΦL5,[25] ΦL7,[25] ΦL10,[25] ΦL20,[25] ΦL21,[25] ΦL29,[25] ΦL31,[25] ΦL32,[25] ΦL53,[25] ΦL54,[25] ΦL55,[25] ΦL56,[25] ΦL57,[25] ΦL60,[25] ΦL61,[25] ΦL62,[25] ΦLO0,[28] ΦLS5B,[27] ΦM1,[20][31] ΦM1,[20][32] ΦM1-5,[27] ΦM2,[33] ΦM3,[21] ΦM4,[21] ΦM5,[20][21] ΦM5 (=ΦF20),[20][31] ΦM5N1,[27] ΦM6,[31] ΦM7,[31] ΦM8,[33] ΦM9,[31] ΦM10,[31] ΦM11,[31] ΦM11S,[27] ΦM12,[31] ΦM14,[31] ΦM14S,[27] ΦM19,[34] ΦM20S,[27][35] ΦM23S,[27] ΦM26S,[27] ΦM27S,[27] ΦMl,[36] ΦMM1C,[27] ΦMM1H,[27] ΦMP1,[37] ΦMP2,[37] ΦMP3,[37] ΦMP4,[37] ΦN2,[21] ΦN3,[21] ΦN4,[21] ΦN9,[21] ΦNM1,[27][35] ΦNM2,[27][35] ΦNM6,[27][35] ΦNM7,[27][35] ΦP6,[29] ΦP10,[29] ΦP33,[29] ΦP45,[29] ΦPBC5,[38] ΦRm108,[39] ΦRmp26,[40] ΦRmp36,[40] ΦRmp38,[40] ΦRmp46,[40] ΦRmp50,[40] ΦRmp52,[40] ΦRmp61,[40] ΦRmp64,[40] ΦRmp67,[40] ΦRmp79,[40] ΦRmp80,[40] ΦRmp85,[40] ΦRmp86,[40] ΦRmp88,[40] ΦRmp90,[40] ΦRmp145,[40] ΦSP,[21] ΦSSSS304,[41] ΦSSSS305,[41] ΦSSSS307,[41] ΦSSSS308,[41] and ΦT1.[21] Of these, only Φ16-3[42] and ΦPBC5[38] have been sequenced.
External links
References
- ↑ Ba S, Willems A, de Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J (2002). "Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa". Syst. Appl. Microbiol. 25 (1): 130–45. PMID 12086180. doi:10.1078/0723-2020-00091.
- ↑ Maâtallah J, Berraho EB, Muñoz S, Sanjuan J, Lluch C (2002). "Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco". J. Appl. Microbiol. 93 (64): 531–40. PMID 12234335. doi:10.1046/j.1365-2672.2002.01718.x.
- ↑ Rogel MA, Ormeño-Orrillo E, Martínez-Romero E (2011). "Symbiovars in rhizobia reflect bacterial adaptation to legumes". Syst. Appl. Microbiol. 34 (2): 96–104. PMID 21306854. doi:10.1016/j.syapm.2010.11.015.
- ↑ León-Barrios, M., M. J. Lorite, J. Donate-Correa, and J. Sanjuán (2009). "Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range.". Syst. Appl. Microbiol. 32 (6): 413–420. PMID 19477097. doi:10.1016/j.syapm.2009.04.003.
- ↑ Villegas Mdel, C.; et al. (2006). "Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti.". Syst. Appl. Microbiol. 29 (7): 526–538. PMID 16413160. doi:10.1016/j.syapm.2005.12.008.
- ↑ Mnasri, B.; et al. (2007). "Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti.". Arch. Microbiol. 187 (1): 79–85. PMID 17019605. doi:10.1007/s00203-006-0173-x.
- ↑ Gubry-Rangin, C.; et al. (2013). "Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species.". Syst. Appl. Microbiol. 36 (7): 490–6. PMID 23871297. doi:10.1016/j.syapm.2013.06.004.
- ↑ Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G (2007). "Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species". J Bacteriol. 189 (14): 5223–36. PMC 1951869 . PMID 17496100. doi:10.1128/JB.00105-07.
- ↑ Harrison, P. W.; et al. (2010). "Introducing the bacterial 'chromid': not a chromosome, not a plasmid". Trends in Microbiology. 18 (4): 141–148. PMID 20080407. doi:10.1016/j.tim.2009.12.010.
- ↑ Galibert, F.; et al. (2001). "The composite genome of the legume symbiont Sinorhizobium meliloti.". Science. 293 (5530): 668–672. PMID 11474104. doi:10.1126/science.1060966.
- 1 2 Galardini, M.; et al. (2011). "Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti.". BMC Genomics. 12: 235. PMC 3164228 . PMID 21569405. doi:10.1186/1471-2164-12-235.
- ↑ The sequence hasn't been officially announced, but is available at NCBI: chromosome, pSymA, pSymB, and pRM41a.
- ↑ Schneiker-Bekel S, Wibberg D, Bekel T, et al. (August 2011). "The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.". J. Biotechnol. 155 (1): 20–33. PMID 21396969. doi:10.1016/j.jbiotec.2010.12.018.
- ↑ Fox, J. E.; et al. (2007). "Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants". Proc. Natl. Acad. Sci. 104 (24): 10282–7. PMC 1885820 . PMID 17548832. doi:10.1073/pnas.0611710104.
- 1 2 3 Maxwell, C. A., Hartwig, U. A., Joseph, C. M., & Phillips, D. A. (1989). "A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti.". Plant Physiol. 91 (3): 842–847. PMC 1062085 . PMID 16667146. doi:10.1104/pp.91.3.842.
- 1 2 3 4 Hartwig, U. A.; et al. (1990). "Chrysoeriol and Luteolin Released from Alfalfa Seeds Induce nod Genes in Rhizobium meliloti.". Plant Physiol. 92 (1): 116–122. PMC 1062256 . PMID 16667231. doi:10.1104/pp.92.1.116.
- 1 2 Dakora, F. D., Joseph, C. M., & D. A. Phillips (1993). "Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti.". Plant Physiol. 101 (3): 819–824. PMC 158695 . PMID 12231731. doi:10.1104/pp.101.3.819.
- ↑ Peters, N. K., Frost, J. W., & Long, S. R. (1986). "A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes.". Science. 233 (4767): 977–980. PMID 3738520. doi:10.1126/science.3738520.
- 1 2 Phillips, D. A., Joseph, C. M., & Maxwell, C. A. (1992). "Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti.". Plant Physiol. 99 (4): 1526–1531. PMC 1080658 . PMID 16669069. doi:10.1104/pp.99.4.1526.
- 1 2 3 4 5 Systematic naming of bacteriophages is rarely followed in the scientific literature. Thus, a variety of phages end up sharing the same name. So, while there exists an RNA phage called ΦM12, which infects enterobacteria, it is not synonymous with the DNA phage ΦM12 listed here. The same may be true for other phages in this list. It should also be noted that within this list two phages have independently been named ΦM5.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Lesley, S. M. (1982). "A bacteriophage typing system for Rhizobium meliloti.". Can. J. Microbiol. 28 (2): 180–189. doi:10.1139/m82-024.
- 1 2 Staniewski, R. (1986). "Morphology and general characteristics of phages active against Rhizobium.". J. Basic Microbiol. 27 (3): 155–165. doi:10.1002/jobm.3620270309.
- 1 2 Handelsman, J., Ugalde, R. A., and Brill, W. J. (1984). "Rhizobium meliloti competitiveness and the alfalfa agglutinin.". J. Bacteriol. 157 (3): 703–707. PMC 215314 . PMID 6698937.
- 1 2 3 4 5 6 7 Krsmanovic-Simic, D. & Werquin, M. (1977). "Etude des bactériophages de Rhizobium meliloti.". Comptes Rendus de l'Académie des Sciences de Paris Série D. 284: 1851–1854. and Werquin, M., Ben Brahim, M. T., and Krsmanovic-Simic, D. (1973). "Etude des bactériophages de Rhizobium meliloti.". Comptes Rendus de l'Académie des Sciences de Paris Série D. 276: 2745–;2748.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Kowalski M. (1967). "Transduction in Rhizobium meliloti.". Acta Microbiol. Pol. 16 (1): 7–11. PMID 4166074. doi:10.1007/BF02661838. Note that this article was reprinted in Plant and Soil (1971) 35 (1): 63—66, which is where the URL and doi direct to.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Szende, K. & Ördögh, F. (1960). "Die Lysogenie von Rhizobium meliloti.". Naturwissenschaften. 47 (17): 404–405. Bibcode:1960NW.....47..404S. doi:10.1007/BF00631269.
The full genome of this phage is available at NCBI - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Werquin, M., Ackermann, H.-W., and Levesque, R. C. (1988). "A Study of 33 Bacteriophages of Rhizobium meliloti.". Appl. Environ. Microbiol. 54 (1): 188–196. PMC 202420 . PMID 16347525.
- 1 2 3 4 5 Corral, E., Montoya, E. and Olivares. J (1978). "Sensitivity to phages in Rhizobium meliloti as a plasmid consequence.". Microbios Lett. 5: 77–80.
- 1 2 3 4 5 Kowalski, M.; et al. (2004). "The effect of rhizobiophages on Sinorhizobium meliloti–Medicago sativa symbiosis.". Biology and Fertility of Soils. 39 (4): 292–294. doi:10.1007/s00374-004-0721-y.
- ↑ Wdowiak, S., Małek, W., and Grządka, M. (2000). "Morphology and general characteristics of phages specific for Astragalus cicer rhizobia.". Curr. Microbiol. 40 (2): 110–113. PMID 10594224. doi:10.1007/s002849910021.
- 1 2 3 4 5 6 7 8 9 Finan, T. M.; et al. (1984). "General Transduction in Rhizobium meliloti.". J. Bacteriol. 159 (1): 120–124. PMC 215601 . PMID 6330024.
- ↑ Małek, W. (1990). "Properties of the transducing phage M1 of Rhizobium meliloti.". J. Basic Microbiol. 30 (1): 43–50. doi:10.1002/jobm.3620300114.
- 1 2 Johansen, E.; et al. (1984). "Monoclonal antibodies to Rhizobium meliloti and surface mutants insensitive to them.". J. Bacteriol. 160 (1): 454–457. PMC 214744 . PMID 6480561.
- ↑ Campbell, G. R., Reuhs, B. L., and Walker, G. C. (1998). "Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen.". J. Bacteriol. 180 (20): 5432–5436. PMC 107593 . PMID 9765576.
- 1 2 3 4 5 Werquin, M., Ackermann, H.-W., and Levesque, R. C. (1989). "Characteristics and comparative study of five Rhizobium meliloti bacteriophages.". Current Microbiol. 18 (5): 307–311. doi:10.1007/BF01575946.
- ↑ Małek, W. (1990). "Properties of the transducing phage Ml of Rhizobium meliloti.". J. Basic Microbiol. 30 (1): 43–50. doi:10.1002/jobm.3620300114.
- 1 2 3 4 Martin, M. O., and Long, S. R. (1984). "Generalized Transduction in Rhizobium meliloti.". J. Bacteriol. 159 (1): 125–129. PMC 215602 . PMID 6330025.
- 1 2 This phage has never been formally reported in the scientific literature. However, the full genomic sequence has been uploaded to NCBI, available here.
- ↑ Novikova, N. I., Bazenova, O. V., and Simarov, B. V. (1987). "Phage sensitivity of natural and mutant strains of alfalfa nodule bacteria differing by cultural and symbiotic properties. (Summary in English)". Agric. Biol. 2: 35–39.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Khanuja, S. P. S. & Kumar, S. (1989). "Symbiotic and galactose utilization properties of phage RMP64-resistant mutants affecting three complementation groups in Rhizobium meliloti". J. Genet. 68 (2): 93–108. doi:10.1007/BF02927852.
- 1 2 3 4 Sharma, R. S.; et al. (2008). "Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp.". Arch. Microbiol. 189 (4): 411–418. PMID 17989956. doi:10.1007/s00203-007-0322-x.
- ↑ Φ16-3 Complete Genome
43. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Microbiol Biot 71: 7271-7278.
44. Chi F, Yang PF, Han F, Jing YX, Shen SH (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10: 1861-1874.