Retina

Retina

Right human eye cross-sectional view, eyes vary significantly among animals.
Details
Artery central retinal artery
Identifiers
Latin Rēte
MeSH A09.371.729
Dorlands
/Elsevier
Retina
TA A15.2.04.002
FMA 58301

Anatomical terminology

The retina (UK: /ˈrɛtɪnə/ RET-i-nə, US: /ˈrɛtnə, ˈrɛtənə/ RET-(ə-)nə, pl. retinae, /ˈrɛtin/; from Latin rēte, meaning "net") is the third and inner coat of the eye which is a light-sensitive layer of tissue. The optics of the eye create an image of the visual world on the retina (through the cornea and lens), which serves much the same function as the film in a camera. Light striking the retina initiates a cascade of chemical and electrical events that ultimately trigger nerve impulses. These are sent to various visual centres of the brain through the fibres of the optic nerve. Neural retina typically refers to three layers of neural cells (photo receptor cells, bipolar cells, and ganglion cells) within the retina, while the entire retina refers to these three layers plus a layer of pigmented epithelial cells.[1]

In vertebrate embryonic development, the retina and the optic nerve originate as outgrowths of the developing brain, specifically the embryonic diencephalon; thus, the retina is considered part of the central nervous system (CNS) and is actually brain tissue.[2][3] It is the only part of the CNS that can be visualized non-invasively.

The retina is a layered structure with several layers of neurons interconnected by synapses. The only neurons that are directly sensitive to light are the photoreceptor cells. For vision, these are of two types: the rods and cones. Rods function mainly in dim light and provide black-and-white vision while cones support the perception of colour. A third type of photoreceptor, the photosensitive ganglion cells, is important for entrainment and reflexive responses to the brightness of light.

Neural signals from the rods and cones undergo processing by other neurons of the retina. The output takes the form of action potentials in retinal ganglion cells whose axons form the optic nerve. Several important features of visual perception can be traced to the retinal encoding and processing of light.

Structure

Section of retina

The vertebrate retina has ten distinct layers.[4] From closest to farthest from the vitreous body - that is, from closest to the front exterior of the head towards the interior and back of the head:

  1. Inner limiting membrane – basement membrane elaborated by Müller cells
  2. Nerve fibre layer – axons of the ganglion cell nuclei (note that a thin layer of Müller cell footplates exists between this layer and the inner limiting membrane)
  3. Ganglion cell layer – contains nuclei of ganglion cells, the axons of which become the optic nerve fibres for messages and some displaced amacrine cells[2]
  4. Inner plexiform layer – contains the synapse between the bipolar cell axons and the dendrites of the ganglion and amacrine cells.[2]
  5. Inner nuclear layer – contains the nuclei and surrounding cell bodies (perikarya) of the amacrine cells, bipolar cells and horizontal cells.[2]
  6. Outer plexiform layer – projections of rods and cones ending in the rod spherule and cone pedicle, respectively. These make synapses with dendrites of bipolar cells.[2] In the macular region, this is known as the Fiber layer of Henle.
  7. Outer nuclear layer – cell bodies of rods and cones
  8. External limiting membrane – layer that separates the inner segment portions of the photoreceptors from their cell nucleus
  9. Layer of rods and cones – layer of rod cells and cone cells
  10. Retinal pigment epithelium - single layer of cuboidal cells (with extrusions not shown in diagram). This is closest to the choroid.

These can be simplified into 4 main processing stages: photoreception, transmission to bipolar cells, transmission to ganglion cells which also contain photoreceptors, the photosensitive ganglion cells, and transmission along the optic nerve. At each synaptic stage there are also laterally connecting horizontal and amacrine cells.

The optic nerve is a central tract of many axons of ganglion cells connecting primarily to the lateral geniculate body, a visual relay station in the diencephalon (the rear of the forebrain). It also projects to the superior colliculus, the suprachiasmatic nucleus, and the nucleus of the optic tract. It passes through the other layers creating the optic disc in primates.[5]

Additional structures, not directly associated with vision, are found as outgrowths of the retina in some vertebrate groups. In birds, the pecten is a vascular structure of complex shape that projects from the retina into the vitreous humour; it supplies oxygen and nutrients to the eye, and may also aid in vision. Reptiles have a similar, but much simpler, structure.[6]

In adult humans, the entire retina is approximately 72% of a sphere about 22 mm in diameter. The entire retina contains about 7 million cones and 75 to 150 million rods. The optic disc, a part of the retina sometimes called "the blind spot" because it lacks photoreceptors, is located at the optic papilla, a nasal zone where the optic-nerve fibres leave the eye. It appears as an oval white area of 3mm². Temporal (in the direction of the temples) to this disc is the macula. At its centre is the fovea, a pit that is responsible for our sharp central vision but is actually less sensitive to light because of its lack of rods. Human and non-human primates possess one fovea as opposed to certain bird species such as hawks who actually are bifoviate and dogs and cats who possess no fovea but a central band known as the visual streak. Around the fovea extends the central retina for about 6 mm and then the peripheral retina. The edge of the retina is defined by the ora serrata. The length from one ora to the other (or macula), the most sensitive area along the horizontal meridian is about 32 mm.

Rods, cones and nerve layers in the retina. The front (anterior) of the eye is on the left. Light (from the left) passes through several transparent nerve layers to reach the rods and cones (far right). A chemical change in the rods and cones send a signal back to the nerves. The signal goes first to the bipolar and horizontal cells (yellow layer), then to the amacrine cells and ganglion cells (purple layer), then to the optic nerve fibres. The signals are processed in these layers. First, the signals start as raw outputs of points in the rod and cone cells. Then the nerve layers identify simple shapes, such as bright points surrounded by dark points, edges, and movement. (Based on a drawing by Ramón y Cajal, 1911.)

In section the retina is no more than 0.5 mm thick. It has three layers of nerve cells and two of synapses, including the unique ribbon synapse. The optic nerve carries the ganglion cell axons to the brain and the blood vessels that open into the retina. The ganglion cells lie outermost in the retina while the photoreceptive cells lie innermost. Because of this counter-intuitive arrangement, light must first pass through and around the ganglion cells and through the thickness of the retina, (including its capillary vessels, not shown) before reaching the rods and cones. However it does not pass through the retinal pigment epithelium or the choroid (both of which are opaque).

The white blood cells in the capillaries in front of the photoreceptors can be perceived as tiny bright moving dots when looking into blue light. This is known as the blue field entoptic phenomenon (or Scheerer's phenomenon).

Between the ganglion cell layer and the rods and cones there are two layers of neuropils where synaptic contacts are made. The neuropil layers are the outer plexiform layer and the inner plexiform layer. In the outer the rods and cones connect to the vertically running bipolar cells, and the horizontally oriented horizontal cells connect to ganglion cells.

Distribution of rods and cones along a line passing through the fovea and the blind spot of a human eye[7]
Illustration of the distribution of cone cells in the fovea of an individual with normal color vision (left), and a color blind (protanopic) retina. Note that the center of the fovea holds very few blue-sensitive cones.

The central retina is cone-dominated and the peripheral retina is rod-dominated. In total there are about seven million cones and a hundred million rods. At the centre of the macula is the foveal pit where the cones are smallest and in a hexagonal mosaic, the most efficient and highest density. Below the pit the other retina layers are displaced, before building up along the foveal slope until the rim of the fovea or parafovea which is the thickest portion of the retina. The macula has a yellow pigmentation from screening pigments and is known as the macula lutea. The area directly surrounding the fovea has the highest density of rods converging on single bipolars. Since the cones have a much lesser power of merging signals, the fovea allows for the sharpest vision the eye can attain.[2]

Though the rod and cones are a mosaic of sorts, transmission from receptors to bipolars to ganglion cells is not direct. Since there are about 150 million receptors and only 1 million optic nerve fibres, there must be convergence and thus mixing of signals. Moreover, the horizontal action of the horizontal and amacrine cells can allow one area of the retina to control another (e.g. one stimulus inhibiting another). This inhibition is key to the sum of messages sent to the higher regions of the brain. In some lower vertebrates (e.g. the pigeon), there is a "centrifugal" control of messages - that is, one layer can control another, or higher regions of the brain can drive the retinal nerve cells, but in primates this does not occur.[2]

Development

Retinal development begins with the establishment of the eye fields mediated by Shh and Six3 with subsequent development of the optic vesicles via Pax6 and Lhx2.[8] The role of Pax6 in eye development was elegantly demonstrated by Walter Gehring and colleagues, who showed that ectopic expression of Pax6 can lead to eye formation on Drosophila antennae, wings, and legs.[9] The optic vesicle gives rise to three structures: the neural retina, the retinal pigmented epithelium, and the optic stalk. The neural retina contains the retinal progenitor cells (RPCs) that give rise to the seven cell types of the retina. Differentiation begins with the retinal ganglion cells and concludes with production of the Muller glia. Although each cell type differentiates from the RPCs in a sequential order, there is considerable overlap in the timing of when individual cell types differentiate.[8] The cues that determine a RPC daughter cell fate are coded by multiple transcription factor families including the bHLH and homeodomain factors.[10]

In addition to guiding cell fate determination, cues exist in the retina to determine the Dorsal/Ventral and Nasal/Temporal axes. The D-V axis is established by a ventral to dorsal gradient of Vax2, whereas the N-T axis is coordinated by expression of the forkhead transcription factors FOXD1 and FOXG1. Additional gradients are formed within the retina that aid in proper targeting of RGC axons that function to establish the retinotopic map.[8]

Blood supply

Fundus photograph showing the blood vessels in a normal human retina. Veins are darker and slightly wider than corresponding arteries. The optic disc is at right, and the macula lutea is near the centre.

The retina is stratified into distinct layers, each containing specific cell types and/or cellular compartments. More over, each layer has unique metabolic requirements.[11] To accommodate this differential metabolic demand, the ophthalmic artery bifurcates and supplies the retina via two distinct vascular networks.[12] The choroidal network, which supplies the choroid and the outer retina, and the retinal network, which supplies the retina's inner layer.

The topology of the inner retinal vasculature is known to conform to network principles that are related to certain physical properties.[13] The unique structure of the blood vessels in the retina has been used for biometric identification. Changes in the retinal microcirculation are seen with aging,[14] exposure to air pollution[15] and may indicate cardiovascular diseases such as hypertension and atherosclerosis.[16][17][18] The identification of vascular bifurcations is one of the basic steps in this analysis.[19] Results of such analyses of the retinal microcirculation can be evaluated against the ground truth data of vascular bifurcations of retinal fundus images that are obtained from the DRIVE data set. In addition, the classes of vessels of DRIVE dataset has also been identified in,[20] and automated method for accurate extraction of these bifurcations is also available in.[21]

Determining the equivalent width of arterioles and venules near the optic disc is also a widely used technique to identify cardiovascular risks.[22]

The bird retina is devoid of blood vessels, perhaps to give un-obliterated light for forming images, thus giving better resolution. It is, therefore, a considered view that the bird retina depends for nutrition and oxygen supply on a specialized organ, called the "pecten" or pecten oculi, located on the blind spot or optic disk. This organ is extremely rich in blood vessels and is thought to supply nutrition and oxygen to the bird retina by diffusion through the vitreous body. The pecten is highly-rich in alkaline phosphatase activity and polarized cells in its bridge portion - both befitting its secretory role.[23] Pecten cells are packed with dark melanin granules, which have been theorized to keep this organ warm with the absorption of stray light falling on the pecten. This is considered to enhance metabolic rate of the pecten, thereby exporting more nutritive molecules to meet the stringent energy requirements of the retina during long periods of exposure to light.[24]

Function

An image is produced by the patterned excitation of the cones and rods in the retina. The excitation is processed by the neuronal system and various parts of the brain working in parallel to form a representation of the external environment in the brain.

The cones respond to bright light and mediate high-resolution colour vision during daylight illumination (also called photopic vision). The rods are saturated at daylight levels and don't contribute to pattern vision. However, rods do respond to dim light and mediate lower-resolution, monochromatic vision under very low levels of illumination (called scotopic vision). The illumination in most office settings falls between these two levels and is called mesopic vision. At these light levels, both the rods and cones are actively contributing pattern information to that exiting the eye. What contribution the rod information makes to pattern vision under these circumstances is unclear.

The response of cones to various wavelengths of light is called their spectral sensitivity. In normal human vision, the spectral sensitivity of a cone falls into one of three subgroups. These are often called blue, green, and red cones but more accurately are short, medium, and long wavelength sensitive cone subgroups. It is a lack of one or more of the cone subtypes that causes individuals to have deficiencies in colour vision or various kinds of colour blindness. These individuals are not blind to objects of a particular colour but experience the inability to distinguish between two groups of colours that can be distinguished by people with normal vision. Humans have three different types of cones (trichromatic vision) while most other mammals lack cones with red sensitive pigment and therefore have poorer (dichromatic) colour vision. However, some animals have four spectral subgroups, e.g. the trout adds an ultraviolet subgroup to short, medium and long subgroups that are similar to humans. Some fish are sensitive to the polarization of light as well.

When light falls on a receptor it sends a proportional response synaptically to bipolar cells which in turn signal the retinal ganglion cells. The receptors are also 'cross-linked' by horizontal cells and amacrine cells, which modify the synaptic signal before the ganglion cells. Rod and cone signals are intermixed and combine, although rods are mostly active in very poorly lit conditions and saturate in broad daylight, while cones function in brighter lighting because they are not sensitive enough to work at very low light levels.

Despite the fact that all are nerve cells, only the retinal ganglion cells and few amacrine cells create action potentials. In the photoreceptors, exposure to light hyperpolarizes the membrane in a series of graded shifts. The outer cell segment contains a photopigment. Inside the cell the normal levels of cyclic guanosine monophosphate (cGMP) keep the Na+ channel open and thus in the resting state the cell is depolarised. The photon causes the retinal bound to the receptor protein to isomerise to trans-retinal. This causes receptor to activate multiple G-proteins. This in turn causes the Ga-subunit of the protein to activate a phosphodiesterase (PDE6), which degrades cGMP, resulting in the closing of Na+ cyclic nucleotide-gated ion channels (CNGs). Thus the cell is hyperpolarised. The amount of neurotransmitter released is reduced in bright light and increases as light levels fall. The actual photopigment is bleached away in bright light and only replaced as a chemical process, so in a transition from bright light to darkness the eye can take up to thirty minutes to reach full sensitivity (see Adaptation (eye)).

In the retinal ganglion cells there are two types of response, depending on the receptive field of the cell. The receptive fields of retinal ganglion cells comprise a central approximately circular area, where light has one effect on the firing of the cell, and an annular surround, where light has the opposite effect on the firing of the cell. In ON cells, an increment in light intensity in the centre of the receptive field causes the firing rate to increase. In OFF cells, it makes it decrease. In a linear model, this response profile is well described by a difference of Gaussians and is the basis for edge detection algorithms. Beyond this simple difference ganglion cells are also differentiated by chromatic sensitivity and the type of spatial summation. Cells showing linear spatial summation are termed X cells (also called parvocellular, P, or midget ganglion cells), and those showing non-linear summation are Y cells (also called magnocellular, M, or parasol retinal ganglion cells), although the correspondence between X and Y cells (in the cat retina) and P and M cells (in the primate retina) is not as simple as it once seemed.

In the transfer of visual signals to the brain, the visual pathway, the retina is vertically divided in two, a temporal (nearer to the temple) half and a nasal (nearer to the nose) half. The axons from the nasal half cross the brain at the optic chiasma to join with axons from the temporal half of the other eye before passing into the lateral geniculate body.

Although there are more than 130 million retinal receptors, there are only approximately 1.2 million fibres (axons) in the optic nerve; a large amount of pre-processing is performed within the retina. The fovea produces the most accurate information. Despite occupying about 0.01% of the visual field (less than 2° of visual angle), about 10% of axons in the optic nerve are devoted to the fovea. The resolution limit of the fovea has been determined at around 10,000 points. See visual acuity. The information capacity is estimated at 500,000 bits per second (for more information on bits, see information theory) without colour or around 600,000 bits per second including colour.

Spatial encoding

On-centres and off-centres of the retina

The retina does not simply send a picture to the brain. The retina spatially encodes (compresses) the image to fit the limited capacity of the optic nerve. Compression is necessary because there are 100 times more photoreceptor cells than ganglion cells as mentioned above. The retina does so by "decorrelating" the incoming images in a manner to be described below. These operations are carried out by the centre surround structures as implemented by the bipolar and ganglion cells.

There are two types of centre surround structures in the retina—on-centres and off-centres. On-centres have a positively weighted centre and a negatively weighted surround. Off-centres are just the opposite. Positive weighting is more commonly known as excitatory and negative weighting is more commonly known as inhibitory.

These centre surround structures are not physical in the sense that one cannot see them by staining samples of tissue and examining the retina's anatomy. The centre surround structures are logical (i.e., mathematically abstract) in the sense that they depend on the connection strengths between ganglion and bipolar cells. It is believed that the connection strengths between cells is caused by the number and types of ion channels embedded in the synapses between the ganglion and bipolar cells. See Receptive field for figures and more information on centre surround structures.

The centre surround structures are mathematically equivalent to the edge detection algorithms used by computer programmers to extract or enhance the edges in a digital photograph. Thus the retina performs operations on the image to enhance the edges of objects within its visual field. For example, in a picture of a dog, a cat and a car, it is the edges of these objects that contain the most information. In order for higher functions in the brain (or in a computer for that matter) to extract and classify objects such as a dog and a cat, the retina is the first step to separating out the various objects within the scene.

As an example, the following matrix is at the heart of the computer algorithm that implements edge detection. This matrix is the computer equivalent to the centre surround structure. In this example, each box (element) within this matrix would be connected to one photoreceptor. The photoreceptor in the centre is the current receptor being processed. The centre photoreceptor is multiplied by the +1 weight factor. The surrounding photoreceptors are the "nearest neighbors" to the centre and are multiplied by the -1/8 value. The sum of all nine of these elements is finally calculated. This summation is repeated for every photoreceptor in the image by shifting left to the end of a row and then down to the next line.

-1/8-1/8-1/8
-1/8+1-1/8
-1/8-1/8-1/8

The total sum of this matrix is zero if all the inputs from the nine photoreceptors are the same value. The zero result indicates the image was uniform (non-changing) within this small patch. Negative or positive sums mean something was varying (changing) within this small patch of nine photoreceptors.

The above matrix is only an approximation to what really happens inside the retina. The differences are:

Here is an example of an input image and how edge detection would modify it.

Once the image is spatially encoded by the centre surround structures, the signal is sent out the optical nerve (via the axons of the ganglion cells) through the optic chiasm to the LGN (lateral geniculate nucleus). The exact function of the LGN is unknown at this time. The output of the LGN is then sent to the back of the brain. Specifically the output of the LGN "radiates" out to the V1 primary visual cortex.

Simplified signal flow: Photoreceptors → Bipolar → Ganglion → Chiasm → LGN → V1 cortex

Clinical significance

There are many inherited and acquired diseases or disorders that may affect the retina. Some of them include:

Diagnosis and treatment

A number of different instruments are available for the diagnosis of diseases and disorders affecting the retina. Ophthalmoscopy and fundus photography are used to examine the retina. Recently, adaptive optics has been used to image individual rods and cones in the living human retina and a company based in Scotland have engineered technology that allows physicians to observe the complete retina without any discomfort to patients.[26]

The electroretinogram is used to measure non-invasively the retina's electrical activity, which is affected by certain diseases. A relatively new technology, now becoming widely available, is optical coherence tomography (OCT). This non-invasive technique allows one to obtain a 3D volumetric or high resolution cross-sectional tomogram of the retinal fine structure with histologic-quality.

OCT scan of a retina at 800 nm with an axial resolution of 3 µm

Treatment depends upon the nature of the disease or disorder. Transplantation of retinas has been attempted, but without much success. At MIT, The University of Southern California, RWTH Aachen University, and the University of New South Wales, an "artificial retina" is under development: an implant which will bypass the photoreceptors of the retina and stimulate the attached nerve cells directly, with signals from a digital camera.

Retinal gene therapy

Gene therapy holds promise as a potential avenue to cure a wide range of retinal diseases. This involves using a non-infectious virus to shuttle a gene into a part of the retina. Recombinant adeno-associated virus (rAAV) vectors possess a number of features that render them ideally suited for retinal gene therapy, including a lack of pathogenicity, minimal immunogenicity, and the ability to transduce postmitotic cells in a stable and efficient manner.[27] rAAV vectors are increasingly utilized for their ability to mediate efficient transduction of retinal pigment epithelium (RPE), photoreceptor cells and retinal ganglion cells. Each cell type can be specifically targeted by choosing the appropriate combination of AAV serotype, promoter, and intraocular injection site.

Several clinical trials have already reported positive results using rAAV to treat Leber's congenital amaurosis, showing that the therapy was both safe and effective.[28][29] There were no serious adverse events, and patients in all three studies showed improvement in their visual function as measured by a number of methods. The methods used varied among the three trials, but included both functional methods such as visual acuity[29][30][31] and functional mobility[30][31][32] as well as objective measures that are less susceptible to bias, such as the pupil's ability to respond to light[28][33] and improvements on functional MRI.[34] Improvements were sustained over the long-term, with patients continuing to do well after more than 1.5 years.[28][29]

The unique architecture of the retina and its relatively immune-privileged environment help this process.[35] Tight junctions that form the blood retinal barrier separate the subretinal space from the blood supply, thus protecting it from microbes and most immune-mediated damage, and enhancing its potential to respond to vector-mediated therapies. The highly compartmentalized anatomy of the eye facilitates accurate delivery of therapeutic vector suspensions to specific tissues under direct visualization using microsurgical techniques.[36] In the sheltered environment of the retina, AAV vectors are able to maintain high levels of transgene expression in the retinal pigmented epithelium (RPE), photoreceptors, or ganglion cells for long periods of time after a single treatment. In addition, the eye and the visual system can be routinely and easily monitored for visual function and retinal structural changes after injections with noninvasive advanced technology, such as visual acuities, contrast sensitivity, fundus auto-fluorescence (FAF), dark-adapted visual thresholds, vascular diameters, pupillometry, electroretinography (ERG), multifocal ERG and optical coherence tomography (OCT).[37]

This strategy is effective against a number of retinal diseases that have been studied, including neovascular diseases that are features of age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity. Since the regulation of vascularization in the mature retina involves a balance between endogenous positive growth factors, such as vascular endothelial growth factor (VEGF) and inhibitors of angiogenesis, such as pigment epithelium-derived factor (PEDF), rAAV-mediated expression of PEDF, angiostatin, and the soluble VEGF receptor sFlt-1, which are all antiangiogenic proteins, have been shown to reduce aberrant vessel formation in animal models.[38] Since specific gene therapies cannot readily be used to treat a significant fraction of patients with retinal dystrophy, there is a major interest in developing a more generally applicable survival factor therapy. Neurotrophic factors have the ability to modulate neuronal growth during development to maintain existing cells and to allow recovery of injured neuronal populations in the eye. AAV encoding neurotrophic factors such as fibroblast growth factor (FGF) family members and GDNF either protected photoreceptors from apoptosis or slowed down cell death.[39]

Society and culture

Retinal scan

A retinal scan may be used as a method of biometric identification.

History

In 1894, Santiago Ramón y Cajal published the first major characterization of retinal neurons in Retina der Wirbelthiere (The Retina of Vertebrates).[40]

George Wald, Haldan Keffer Hartline and Ragnar Granit won the 1967 Nobel Prize in Physiology or Medicine for their scientific research on the retina.[41]

A recent University of Pennsylvania study calculated the approximate bandwidth of human retinas is 8.75 megabits per second, whereas guinea pig retinas transfer at 875 kilobits.[42]

MacLaren & Pearson and colleagues at University College London and Moorfields Eye Hospital in London showed in 2006 that photoreceptor cells could be transplanted successfully in the mouse retina if donor cells were at a critical developmental stage.[43] Recently Ader and colleagues in Dublin showed using the electron microscope that transplanted photoreceptors formed synaptic connections.[44]

In 2012 Sebastian Seung and his lab at MIT have launched EyeWire, an online Citizen science game where players trace neurons in the retina.[45] The goals of the EyeWire project are to identify specific cell types within the known broad classes of retinal cells, and to map the connections between neurons in the retina, which will help to determine how vision works.[46][47]

In other animals

Vertebrate and cephalopod retina differences

The vertebrate retina is inverted in the sense that the light sensing cells sit at the back side of the retina, so that light has to pass through layers of neurons and capillaries before it reaches the rods and cones. By contrast, the cephalopod retina has the photoreceptors at the front side of the retina, with processing neurons and capillaries behind them. Because of this, cephalopods do not have a blind spot.

The cephalopod retina does not originate as an outgrowth of the brain, as the vertebrate one does. It is arguable that this difference shows that vertebrate and cephalopod eyes are not homologous but have evolved separately.

The difference between vertebrate and cephalopod retinas presents an interesting puzzle of evolutionary path which is not yet fully settled. From an evolutionary perspective, a convoluted structure such as the inverted retina can generally come about as a consequence of two alternative processes; (a) an advantageous "good" compromise between competing functional limitations, or (b) as a historical maladaptive relic of the convoluted path of organ evolution and transformation. Vision is an important adaptation in higher vertebrates. Therefore, if the retina is indeed "wired wrongly" or "badly designed" (from an optical engineering point of view) then it is sensible to look for it to possibly have some very significant physiological advantage. One such suggestion is based on the argument that the mammalian photoreceptor amplification process requires vast quantities of metabolic energy, and consequently, it requires massive and homogeneous supply of blood. Indeed, a unique network of blood vessels is well adapted to provide the photoreceptor layer with copious quantities of blood. This shows that the inverted retina is an adaptation to deliver abundant quantities of oxygen to the retina commensurate with its high energy demands and provide it with good maintenance by the retinal pigment epithelial (RPE) cells against photo-oxidative damage,[48] which, while at first glance should be worsened by the oxygen-rich blood in the choroid, is nonetheless eliminated by the process of opsin disc recycling the RPE enables.[49] This latter effect allows the photoreceptor cells to have a long (i.e. decades) useful life. The combination of this process and the chemical resetting[50] of retinal after the phototransduction cascade may be the real reason that the vertebrate retina requires the "vast quantities of metabolic energy" referred to above. Light loss in the inverted retina, due to the overlying neural fibre layer, is often portrayed as a disadvantage. However, surface vertebrates live in a very well illuminated environment relative to their deep-water evolutionary ancestors, so losing some light can be seen as a mechanism for avoiding excessive exposure of the retina to damaging light.

The cephalopods have a non-inverted retina which is comparable in resolving power to the eyes of many vertebrates. Squid eyes do not have an analog of the vertebrate RPE. Although their photoreceptors contain a protein, retinochrome, that recycles retinal and replicates one of the functions of the vertebrate RPE, one could argue that the photoreceptor as a whole is not maintained as well overall in cephalopods as in vertebrates.[51] As a result, the useful lifetime of photoreceptors in invertebrates is much shorter than in vertebrates. A third possibility, of having easily replaced stalk-eyes (some lobsters) or retinae (some spiders, such as Deinopis[52]) is rare.

Additional Images

See also

References

  1. J, Krause William (2005-07-01). Krause's Essential Human Histology for Medical Students. Boca Raton: Universal Publishers. ISBN 9781581124682.
  2. 1 2 3 4 5 6 7 "Sensory Reception: Human Vision: Structure and function of the Human Eye" vol. 27, Encyclopædia Britannica, 1987
  3. http://www.uphs.upenn.edu/news/News_Releases/jul06/retinput.htm
  4. The Retinal Tunic. Virginia-Maryland Regional College of Veterinary Medicine
  5. Shepherd, Gordon (2004). The Synaptic Organization of the Brain. New York, NY: Oxford University Press. pp. 217–225. ISBN 978-0-19-515956-1.
  6. Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. p. 465. ISBN 0-03-910284-X.
  7. Foundations of Vision, Brian A. Wandell
  8. 1 2 3 Heavner, W; Pevny, L (December 1, 2012). "Eye development and retinogenesis.". Cold Spring Harbor perspectives in biology. 4 (12): a008391. PMC 3504437Freely accessible. PMID 23071378. doi:10.1101/cshperspect.a008391.
  9. Halder, G; Callaerts, P; Gehring, WJ (March 24, 1995). "Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila.". Science. 267 (5205): 1788–92. PMID 7892602. doi:10.1126/science.7892602.
  10. Hatakeyama, J; Kageyama, R (February 2004). "Retinal cell fate determination and bHLH factors.". Seminars in cell & developmental biology. 15 (1): 83–9. PMID 15036211. doi:10.1016/j.semcdb.2003.09.005.
  11. Yu, DY; Yu, PK; Cringle, SJ; Kang, MH; Su, EN (May 2014). "Functional and morphological characteristics of the retinal and choroidal vasculature.". Progress in retinal and eye research. 40: 53–93. PMID 24583621. doi:10.1016/j.preteyeres.2014.02.001.
  12. Kiel, Jeffrey W. Anatomy. Morgan & Claypool Life Sciences. Retrieved 17 April 2017.
  13. Sherman, T (1981). "On connecting large vessels to small - the meaning of murray law". Journal of General Physiology. 78: 431–453. PMC 2228620Freely accessible. PMID 7288393. doi:10.1085/jgp.78.4.431.
  14. Adar SD, Klein R, Klein BE, Szpiro AA, Cotch MF, Wong TY, et al. (2010). "Air Pollution and the microvasculature: a crosssectional assessment of in vivo retinal images in the population based multiethnic study of atherosclerosis (MESA)". PLoS Med. 7: e1000372. doi:10.1371/journal.pmed.1000372.
  15. Louwies, T; Int Panis, L; Kicinski, M; De Boever, P; Nawrot, Tim S (2013). "Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults". Environmental Health Perspectives. 121: 1011–6. PMC 3764070Freely accessible. PMID 23777785. doi:10.1289/ehp.1205721.
  16. Tso, M., Jampol, L.: Path-physiology of hypertensive retinopathy. Ophthalmology vol. 89, 1982
  17. Chapman N.; Dell'omo G.; Sartini M.; Witt N.; Hughes A.; Thom S.; Pedrinelli R. (2002). "Peripheral vascular disease is associated with abnormal arteriolar diameter relationships at bifurcations in the human retina". Clinical Science. 103.
  18. Patton, N.; Aslam, T.; MacGillivray, T.; Deary, I.; Dhillon, B.; Eikelboom, R.; Yogesan, K.; Constable, I. (2006). "Retinal image analysis: Concepts, applications and potential". Progress in Retinal and Eye Research. 25: 99–127. PMID 16154379. doi:10.1016/j.preteyeres.2005.07.001.
  19. Azzopardi G.; Petkov N. (2011). "Detection of retinal vascular bifurcations by trainable V4-like filters, in Computer Analysis of Images and Patterns (CAIP), Seville". Lecture Notes in Computer Science. 6854: 451–459. doi:10.1007/978-3-642-23672-3_55.
  20. Qureshi T. A, Hunter A, Al-Diri B, 2013, A manually-labeled, artery/vein classified benchmark for the DRIVE dataset, IEEE Computer Based Medical Systems (CBMS), 2013, pp: 485–488
  21. Qureshi T. A., Hunter A, Al-Diri B, A Bayesian Framework for the Local Configuration of Retinal Junctions, IEEE Computer Vision and Pattern Recognition (CVPR) 2014, pp: 3105–3110
  22. Wong TY, Knudtson MD, Klein R, Klein BE, Meuer SM, Hubbard LD (2004). "Computer assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors". Ophthalmology. 111: 1183–1190. PMID 15177969. doi:10.1016/j.ophtha.2003.09.039.
  23. Bawa S.R.; YashRoy R.C. (1972). "Effect of dark and light adaptation on the retina and pecten of chicken". Experimental Eye Research. 13: 92–97. doi:10.1016/0014-4835(72)90129-7.
  24. Bawa, S.R.; YashRoy, R.C. (1974). "Structure and function of vulture pecten". Cells Tissues Organs. 89: 473–480. doi:10.1159/000144308.
  25. Oh, Kean, "Pathogenetic Mechanisms of Retinal Detachment", in Retina, ed. Ryan, S.J., Elsevier Health Sciences, Philadelphia, PA, 2006, p. 2013-2015
  26. Seeing into the Future Ingenia, March 2007
  27. Dinculescu Astra; Glushakova Lyudmyla; Seok-Hong Min; Hauswirth William W (2005). "Adeno-associated virus-vectored gene therapy for retinal disease". Human Gene Therapy. 16 (6): 649–663. PMID 15960597. doi:10.1089/hum.2005.16.649.
  28. 1 2 3 Cideciyan A. V.; Hauswirth W. W.; Aleman T. S.; Kaushal S.; Schwartz S. B.; Boye S. L.; Windsor E. A. M.; et al. (2009). "Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year". Human gene therapy. 20 (9): 999–1004. PMC 2829287Freely accessible. PMID 19583479. doi:10.1089/hum.2009.086.
  29. 1 2 3 Simonelli F.; Maguire A. M.; Testa F.; Pierce E. A.; Mingozzi F.; Bennicelli J. L.; Rossi S.; et al. (2010). "Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration". Molecular Therapy. 18 (3): 643–650. PMC 2839440Freely accessible. PMID 19953081. doi:10.1038/mt.2009.277.
  30. 1 2 Maguire A. M.; Simonelli F.; Pierce E. A.; Pugh E. N.; Mingozzi F.; Bennicelli J.; Banfi S.; et al. (2008). "Safety and efficacy of gene transfer for Leber's congenital amaurosis". The New England Journal of Medicine. 358 (21): 2240–2248. PMC 2829748Freely accessible. PMID 18441370. doi:10.1056/NEJMoa0802315.
  31. 1 2 Maguire A. M.; High K. A.; Auricchio A.; Wright J. F.; Pierce E. A.; Testa F.; Mingozzi F.; et al. (2009). "Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial". Lancet. 374 (9701): 1597–1605. PMC 4492302Freely accessible. PMID 19854499. doi:10.1016/S0140-6736(09)61836-5.
  32. Bainbridge J. W. B.; Smith A. J.; Barker S. S.; Robbie S.; Henderson R.; Balaggan K.; Viswanathan A.; et al. (2008). "Effect of gene therapy on visual function in Leber's congenital amaurosis". The New England Journal of Medicine. 358 (21): 2231–2239. PMID 18441371. doi:10.1056/NEJMoa0802268.
  33. Hauswirth W. W.; Aleman T. S.; Kaushal S.; Cideciyan A. V.; Schwartz S. B.; Wang L.; Conlon T. J.; et al. (2008). "Treatment of Leber Congenital Amaurosis Due to RPE65Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial". Human gene therapy. 19 (10): 979–990. PMC 2940541Freely accessible. PMID 18774912. doi:10.1089/hum.2008.107.
  34. Ashtari M.; Cyckowski L. L.; Monroe J. F.; Marshall K. A.; Chung D. C.; Auricchio A.; Simonelli F.; et al. (2011). "The human visual cortex responds to gene therapy-mediated recovery of retinal function". The Journal of Clinical Investigation. 121 (6): 2160–2168. PMC 3104779Freely accessible. PMID 21606598. doi:10.1172/JCI57377.
  35. Bennett J (2003). "Immune response following intraocular delivery of recombinant viral vectors". Gene therapy. 10 (11): 977–982. PMID 12756418. doi:10.1038/sj.gt.3302030.
  36. Curace Enrico M.; Auricchio Alberto (2008). "Versatility of AAV vectors for retinal gene transfer". Vision Research. 48: 353–359. doi:10.1016/j.visres.2007.07.027.
  37. Anneke , Roepmana Ronald, Koenekoopb Robert K., Cremersa Frans P.M. (2008). "Leber congenital amaurosis: Genes, proteins and disease mechanisms". Progress in Retinal and Eye Research. 27 (4): 391–419. PMID 18632300. doi:10.1016/j.preteyeres.2008.05.003.
  38. Rolling F (2004). "Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives". Gene Therapy. 11: S26–S32. PMID 15454954. doi:10.1038/sj.gt.3302366.
  39. Rolling F (2004). "Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives". Gene Therapy. 11: S26–S32. PMID 15454954. doi:10.1038/sj.gt.3302366.
  40. "Santiago Ramón y Cajal - Biographical". www.nobelprize.org. Retrieved 2015-10-20.
  41. The Nobel Prize in Physiology or Medicine 1967
  42. Calculating the speed of sight - being-human - 28 July 2006 - New Scientist
  43. MacLaren, RE; Pearson, RA; MacNeil, A; et al. (November 2006). "Retinal repair by transplantation of photoreceptor precursors". Nature. 444 (7116): 203–7. PMID 17093405. doi:10.1038/nature05161.
  44. Bartsch, U.; Oriyakhel, W.; Kenna, P. F.; Linke, S.; Richard, G.; Petrowitz, B.; Humphries, P.; Farrar, G. J.; Ader, M. (2008). "Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice". Experimental Eye Research. 86 (4): 691–700. PMID 18329018. doi:10.1016/j.exer.2008.01.018.
  45. "About << EyeWire". Retrieved March 26, 2012.
  46. "Retina << EyeWire". Retrieved March 27, 2012.
  47. "EyeWire". Retrieved March 27, 2012.
  48. Photobiology of the retina http://www.photobiology.info/Rozanowska.html
  49. Diagrammatic representation of disc shedding and phagosome retrieval into the pigment epithelial cell http://webvision.med.utah.edu/imageswv/photphag.jpeg
  50. Visual phototransduction
  51. Retinochrome http://jgp.rupress.org/content/65/2/235.full.pdf
  52. http://www.australianmuseum.net.au/How-spiders-see-the-world

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.