Reality structure

In mathematics, a reality structure on a complex vector space V is a decomposition of V into two real subspaces, called the real and imaginary parts of V:

Here VR is a real subspace of V, i.e. a subspace of V considered as a vector space over the real numbers. If V has complex dimension n (real dimension 2n), then VR must have real dimension n.

The standard reality structure on the vector space is the decomposition

In the presence of a reality structure, every vector in V has a real part and an imaginary part, each of which is a vector in VR:

In this case, the complex conjugate of a vector v is defined as follows:

This map is an antilinear involution, i.e.

Conversely, given an antilinear involution on a complex vector space V, it is possible to define a reality structure on V as follows. Let

and define

Then

This is actually the decomposition of V as the eigenspaces of the real linear operator c. The eigenvalues of c are +1 and 1, with eigenspaces VR and  VR, respectively. Typically, the operator c itself, rather than the eigenspace decomposition it entails, is referred to as the reality structure on V.

See also

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.