Actinopterygii
Ray-finned fish Temporal range: Late Silurian–Recent | |
---|---|
Different species of Actinopterygii | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Superclass: | Osteichthyes |
Class: | Actinopterygii Klein, 1885 |
Subclasses | |
Actinopterygii /ˌæktᵻnˌɒptəˈrɪdʒi.aɪ/, or the ray-finned fishes, constitute a class or subclass of the bony fishes.[1]
The ray-finned fishes are so called because their fins are webs of skin supported by bony or horny spines ("rays"), as opposed to the fleshy, lobed fins that characterize the class Sarcopterygii (lobe-finned fish). These actinopterygian fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the link or connection between these fins and the internal skeleton (e.g., pelvic and pectoral girdles).
Numerically, actinopterygians are the dominant class of vertebrates, comprising nearly 99% of the over 30,000 species of fish.[2] They are ubiquitous throughout freshwater and marine environments from the deep sea to the highest mountain streams. Extant species can range in size from Paedocypris, at 8 mm (0.3 in), to the massive ocean sunfish, at 2,300 kg (5,070 lb), and the long-bodied oarfish, at 11 m (36 ft).
Characteristics
Ray-finned fishes occur in many variant forms. The main features of a typical ray-finned fish are shown in the diagram at the left.
Fin arrangements |
---|
Ray-finned fish are varied in size, shape and the arrangement and number of their ray-fins. See fish fin.
|
Reproduction
In nearly all ray-finned fish, the sexes are separate, and in most species the females spawn eggs that are fertilized externally, typically with the male inseminating the eggs after they are laid. Development then proceeds with a free-swimming larval stage.[3] However other patterns of ontogeny exist, with one of the commonest being sequential hermaphroditism. In most cases this involves protogyny, fish starting life as females and converting to males at some stage, triggered by some internal or external factor. This may be advantageous as females become less prolific as they age while male fecundity increases with age. Protandry, where a fish converts from male to female, is much less common than protogyny.[4] Most families use external rather than internal fertilization.[5] Of the oviparous teleosts, most (79%) do not provide parental care.[6] Viviparity, ovoviviparity, or some form of parental care for eggs, whether by the male, the female, or both parents is seen in a significant fraction (21%) of the 422 teleost families; no care is likely the ancestral condition.[6] Viviparity is relatively rare and is found in about 6% of teleost species; male care is far more common than female care.[6][7] Male territoriality "preadapts" a species for evolving male parental care.[8][9]
There are a few examples of fish that self-fertilise. The mangrove rivulus is an amphibious, simultaneous hermaphrodite, producing both eggs and spawn and having internal fertilisation. This mode of reproduction may be related to the fish's habit of spending long periods out of water in the mangrove forests it inhabits. Males are occasionally produced at temperatures below 19 °C (66 °F) and can fertilise eggs that are then spawned by the female. This maintains genetic variability in a species that is otherwise highly inbred.[10]
Fossil record
The earliest known fossil actinopterygiian is Andreolepis hedei, dating back 420 million years (Late Silurian). Remains have been found in Russia, Sweden, and Estonia.[11]
Classification
Actinopterygians are divided into the subclasses Chondrostei and Neopterygii. The Neopterygii, in turn, are divided into the infraclasses Holostei and Teleostei. During the Mesozoic and Cenozoic the teleosts in particular diversified widely, and as a result, 96% of all known fish species are teleosts. The cladogram shows the major groups of actinopterygians and their relationship to the terrestrial vertebrates (tetrapods) that evolved from a related group of fish.[12][13][14] Approximate dates are from Near et al., 2012.[12]
Osteichthyes |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
The polypterids (bichirs and ropefish) are the sister lineage of all other actinopterygians, The Acipenseriformes (sturgeons and paddlefishes) are the sister lineage of Neopterygii, and Holostei (bowfin and gars) are the sister lineage of teleosts. The Elopomorpha (eels and tarpons) appears to be the most basic teleosts.[12]
Chondrostei | |
Chondrostei (cartilage bone) are primarily cartilaginous fish showing some ossification. There are 52 species divided among two orders, the Acipenseriformes (sturgeons and paddlefishes) and the Polypteriformes (reedfishes and bichirs). It is thought that the chondrosteans evolved from bony fish but lost the bony hardening of their cartilaginous skeletons, resulting in a lightening of the frame. Elderly chondrosteans show beginnings of ossification of the skeleton, suggesting that this process is delayed rather than lost in these fish.[15] This group has at times been classified with the sharks: the similarities are obvious, as not only do the chondrosteans mostly lack bone, but the structure of the jaw is more akin to that of sharks than other bony fish, and both lack scales (excluding the Polypteriforms). Additional shared features include spiracles and, in sturgeons, a heterocercal tail (the vertebrae extend into the larger lobe of the caudal fin). However the fossil record suggests that these fish have more in common with the Teleostei than their external appearance might suggest.[15] Chondrostei is paraphyletic meaning that this subclass does not contain all the descendants of their common ancestor; reclassification of the Chondrostei is therefore not out of the question. |
---|---|---|
Neopterygii | |
Neopterygii (new fins) appeared somewhere in the Late Permian, before the time of the dinosaurs. There are only few changes during their evolution from the earlier actinopterygians. They are a very successful group of fishes, because they can move more rapidly than their ancestors. Their scales and skeletons began to lighten during their evolution, and their jaws became more powerful and efficient. While electroreception and the ampullae of Lorenzini is present in all other groups of fish, with the exception of hagfish, Neopterygii has lost this sense, though it later re-evolved within Gymnotiformes and catfishes, who possess nonhomologous teleost ampullae.[16] |
The listing below follows Phylogenetic Classification of Bony Fishes [17] with notes when this differs from Nelson,[18] ITIS [19] and FishBase[20] and extinct groups from Van der Laan 2016.[21]
- Order †?Asarotiformes Schaeffer 1968
- Order †?Discordichthyiformes Minikh 1998
- Order †?Paphosisciformes
- Order †?Scanilepiformes Selezneya 1985
- Order †Cheirolepidiformes Kazantseva-Selezneva 1977
- Order †Paramblypteriformes Heyler 1969
- Order †Rhadinichthyiformes
- Order †Palaeonisciformes Hay 1902
- Order †Tarrasiiformes sensu Lund & Poplin 2002
- Order †Ptycholepiformes Andrews et al. 1967
- Order †Redfieldiiformes Berg 1940
- Order †Haplolepidiformes Westoll 1944
- Order †Aeduelliformes Heyler 1969
- Order †Platysomiformes
- Order †Dorypteriformes Cope 1871
- Order †Eurynotiformes Sallan & Coates 2013
- Subclass Cladistii Pander 1860
- Order †Guildayichthyiformes Lund 2000
- Order Polypteriformes (bichirs and reedfishes) [22]
- Subclass Actinopteri Cope 1972 s.s.
- Order †Elonichthyiformes Kazantseva-Selezneva 1977
- Order †Phanerorhynchiformes
- Order †Saurichthyiformes
- Infraclass Chondrostei
- Order †Birgeriiformes
- Order †Chondrosteiformes
- Order Acipenseriformes (sturgeons and paddlefishes)
- Infraclass Neopterygii Regan 1923 sensu Xu & Wu 2012
- Order †Pholidopleuriformes Berg 1937
- Order †Peltopleuriformes Lehman 1966
- Order †Perleidiformes Berg 1937
- Order †Luganoiiformes Lehman 1958
- Order †Pycnodontiformes Berg 1937
- Clade Holostei
- Division Halecomorpha Cope 1872 sensu Grande & Bemis 1998
- Order †Parasemionotiformes Lehman 1966
- Order †Ionoscopiformes Grande & Bemis 1998
- Order Amiiformes (bowfins)
- Division Ginglymodi Cope 1871
- Order †Dapediiformes
- Order †Semionotiformes Arambourg & Bertin 1958
- Order Lepisosteiformes (gars)
- Division Halecomorpha Cope 1872 sensu Grande & Bemis 1998
- Clade Teleosteomorpha Arratia 2000 sensu Arratia 2013
- Division Aspidorhynchei
- Order †Aspidorhynchiformes Bleeker 1859
- Order †Pachycormiformes Berg 1937
- Division Teleostei Müller 1844 sensu Arratia 2013
- Order †?Araripichthyiformes
- Order †?Ligulelliiformes Taverne 2011
- Order †?Tselfatiiformes Nelson 1994
- Order †Pholidophoriformes
- Order †Dorsetichthyiformes
- Order †Leptolepidiformes
- Order †Crossognathiformes Taverne 1989
- Order †Ichthyodectiformes Bardeck & Sprinkle 1969
- Teleocephala de Pinna 1996 s.s.
- Megacohort Elopocephalai Patterson 1977 sensu Arratia 1999 (Elopomorpha Greenwood et al. 1966)
- Order Elopiformes Gosline 1960 (ladyfishes and tarpon)
- Order Albuliformes Greenwood et al. 1966 sensu Forey et al. 1996 (bonefishes)
- Order Notacanthiformes Goodrich 1909 (halosaurs and spiny eels)
- Order Anguilliformes Jarocki 1822 sensu Goodrich 1909 (true eels)
- Megacohort Osteoglossocephalai sensu Arratia 1999
- Supercohort Osteoglossocephala sensu Arratia 1999 (Osteoglossomorpha Greenwood et al. 1966)
- Order †Lycopteriformes
- Order Hiodontiformes (mooneye and goldeye)
- Order Osteoglossiformes (bony-tongued fishes)
- Supercohort Clupeocephala Patterson & Rosen 1977 sensu Arratia 2010
- Cohort Otomorpha Wiley & Johnson 2010 (Otocephala; Ostarioclupeomorpha)
- Subcohort Clupei Wiley & Johnson 2010 (Clupeomorpha Greenwood et al. 1966)
- Order †Ellimmichthyiformes Grande 1982
- Order Clupeiformes Bleeker 1859 (herrings and anchovies)
- Subcohort Alepocephali
- Order Alepocephaliformes
- Subcohort Ostariophysi Sagemehl 1885
- Section Anotophysa (Rosen & Greenwood 1970) Sagemehl 1885
- Order †Sorbininardiformes Taverne 1999
- Order Gonorynchiformes Regan 1909 (milkfishes)
- Section Otophysa Garstang 1931
- Order Cypriniformes (barbs, carp, danios, goldfishes, loaches, minnows, rasboras)
- Order Characiformes (characins, pencilfishes, hatchetfishes, piranhas, tetras, dourado / golden (genus Salminus) and pacu)
- Order Gymnotiformes (electric eels and knifefishes)
- Order Siluriformes (catfishes)
- Section Anotophysa (Rosen & Greenwood 1970) Sagemehl 1885
- Subcohort Clupei Wiley & Johnson 2010 (Clupeomorpha Greenwood et al. 1966)
- Cohort Euteleosteomorpha (Euteleostei Greenwood 1967 sensu Johnson & Patterson 1996)
- Subcohort Lepidogalaxii
- Lepidogalaxiiformes Betancur-Rodriguez et al. 2013 (salamanderfish)
- Subcohort Protacanthopterygii Greenwood et al. 1966 sensu Johnson & Patterson 1996
- Order Argentiniformes (barreleyes and slickheads) (formerly in Osmeriformes)
- Order Galaxiiformes
- Order Salmoniformes (salmon and trout)
- Order Esociformes (pike)
- Subcohort Stomiati
- Order Osmeriformes (smelts)
- Order Stomiatiformes (bristlemouths and marine hatchetfishes)
- Subcohort Neoteleostei Nelson 1969
- Infracohort Ateleopodia
- Order Ateleopodiformes (jellynose fish)
- Infracohort Eurypterygia Rosen 1973
- Section Aulopa [Cyclosquamata]
- Order Aulopiformes Rosen 1973 (Bombay duck and lancetfishes)
- Section Ctenosquamata Rosen 1973
- Subsection Myctophata [Scopelomorpha]
- Order Myctophiformes Regan 1911 (lanternfishes)
- Subsection Acanthomorphata Betancur-Rodriguez et al. 2013
- Division Lampridacea Betancur-Rodriguez et al. 2013 [Lampridomorpha; Lampripterygii]
- Order Lampriformes Regan 1909 (oarfish, opah and ribbonfishes)
- Division Paracanthomorphacea sensu Grande et al. 2013 (Paracanthopterygii Greenwood 1937)
- Order Percopsiformes Berg 1937 (cavefishes and trout-perches)
- Order †Sphenocephaliformes Rosen & Patterson 1969
- Order Zeiformes Regan 1909 (dories)
- Order Stylephoriformes Miya et al. 2007
- Order Gadiformes Goodrich 1909 (cods)
- Division Polymixiacea Betancur-Rodriguez et al. 2013 (Polymyxiomorpha; Polymixiipterygii)
- Order †Pattersonichthyiformes Gaudant 1976
- Order †Ctenothrissiformes Berg 1937
- Order Polymixiiformes Lowe 1838 (beardfishes)
- Division Euacanthomorphacea Betancur-Rodriguez et al. 2013 (Euacanthomorpha sensu Johnson & Patterson 1993; Acanthopterygii Gouan 1770 sensu])
- Subdivision Berycimorphaceae Betancur-Rodriguez et al. 2013
- Order Beryciformes (fangtooths and pineconefishes) (incl. Stephanoberyciformes; Cetomimiformes)
- Subdivision Holocentrimorphaceae Betancur-Rodriguez et al. 2013
- Order Holocentriformes
- Subdivision Percomorphaceae Betancur-Rodriguez et al. 2013 (Percomorpha sensu Miya et al. 2003; Acanthopteri)
- Series Ophidiimopharia Betancur-Rodriguez et al. 2013
- Order Ophidiiformes (pearlfishes)
- Series Batrachoidimopharia Betancur-Rodriguez et al. 2013
- Order Batrachoidiformes (toadfishes)
- Series Gobiomopharia Betancur-Rodriguez et al. 2013
- Order Kurtiformes
- Order Gobiiformes
- Series Scombrimopharia Betancur-Rodriguez et al. 2013
- Order Syngnathiformes (seahorses and pipefishes[23])
- Order Scombriformes
- Series Carangimopharia Betancur-Rodriguez et al. 2013
- Sub Series Anabantaria
- Order Synbranchiformes (swamp eels)
- Order Anabantiformes (Labyrinthici) (gouramies, snakeheads, )
- Sub Series Carangaria
- Carangaria incertae sedis
- Order Istiophoriformes (Marlins, swordfishes, billfishes)
- Order Carangiformes (Jack mackerels, pompanos)
- Order Pleuronectiformes (flatfishes)
- Sub Series Ovalentaria sensu Smith & Near 2012 (Stiassnyiformes sensu Li et al. 2009)
- Ovalentaria incertae sedis
- Order Cichliformes (Cichlids, Convict blenny, leaf fishes)
- Order Atheriniformes (silversides and rainbowfishes)
- Order Cyprinodontiformes (livebearers, killifishes)
- Order Beloniformes (flyingfishes)
- Order Mugiliformes (mullets)
- Order Blenniiformes
- Order Gobiesociformes
- Sub Series Anabantaria
- Series Eupercaria (Percomorpharia Betancur-Rodriguez et al. 2013)
- Eupercaria incertae sedis
- Order Gerreiformes (Mojarras)
- Order Uranoscopiformes (Paratrachinoidei sensu Li et al. 2009) (Stargazers, sandperches)
- Order Labriformes (Wrasses)
- Order Moroniformes (temperate sea basses)
- Order Ephippiformes (Sicklefishes, Spadefishes)
- Order Chaetodontiformes (butterflyfishes, ponyfishes)
- Order Acanthuriformes Jordan 1923 (Louvars, Moorish Idols, surgeonfishes)
- Order Lutjaniformes (Snappers, grunts)
- Order Lobotiformes (Tiger perches, Atlantic tripletail)
- Order Spariformes Bleeker 1876 sensu Akazaki 1962 (sea breams, porgy)
- Order Scatophagiformes Bleeker 1876 (Scats)
- Order Priacanthiformes (Bigeyes, Bandfishes)
- Order Caproiformes (Boarfishes)
- Order Lophiiformes (anglerfishes)
- Order Tetraodontiformes (filefishes and pufferfish)
- Order Pempheriformes
- Order Centrarchiformes Bleeker 1859
- Order Perciformes Bleeker 1859 (incl. Gasterosteiformes; Scorpaeniformes)
- Series Ophidiimopharia Betancur-Rodriguez et al. 2013
- Subdivision Berycimorphaceae Betancur-Rodriguez et al. 2013
- Division Lampridacea Betancur-Rodriguez et al. 2013 [Lampridomorpha; Lampripterygii]
- Subsection Myctophata [Scopelomorpha]
- Section Aulopa [Cyclosquamata]
- Infracohort Ateleopodia
- Subcohort Lepidogalaxii
- Cohort Otomorpha Wiley & Johnson 2010 (Otocephala; Ostarioclupeomorpha)
- Supercohort Osteoglossocephala sensu Arratia 1999 (Osteoglossomorpha Greenwood et al. 1966)
- Megacohort Elopocephalai Patterson 1977 sensu Arratia 1999 (Elopomorpha Greenwood et al. 1966)
- Division Aspidorhynchei
- Ateleopus japonicus (Ateleopodiformes)
- Diplecogaster bimaculata (Gobiesociformes)
- Aldrovandia sp. (Notacanthiformes)
- Polymixia lowei (Polymixiiformes)
- Scopelogadus mizolepis (Stephanoberyciformes)
- Chauliodus sp. (Stomiiformes)
References
- ↑ Kardong, Kenneth (2015). Vertebrates: Comparative Anatomy, Function, Evolution. New York: McGraw-Hill Education. pp. 99–100. ISBN 978-0-07-802302-6.
- ↑ (Davis, Brian 2010).
- ↑ Dorit, R.L.; Walker, W.F.; Barnes, R.D. (1991). Zoology. Saunders College Publishing. p. 819. ISBN 978-0-03-030504-7.
- ↑ Avise, J.C.; Mank, J.E. (2009). "Evolutionary perspectives on hermaphroditism in fishes". Sexual Development. 3: 152–163. doi:10.1159/000223079.
- ↑ Pitcher, T (1993). The Behavior of Teleost Fishes. London: Chapman & Hall.
- 1 2 3 Reynolds, John; Nicholas B. Goodwin; Robert P. Freckleton (19 March 2002). "Evolutionary Transitions in Parental Care and Live Bearing in Vertebrates". Philosophical Transactions of the Royal Society B: Biological Sciences. 357 (1419). PMC 1692951 . PMID 11958696. doi:10.1098/rstb.2001.0930.
- ↑ Clutton-Brock, T. H. (1991). The Evolution of Parental Care. Princeton, NJ: Princeton UP.
- ↑ Werren, John; Mart R. Gross; Richard Shine (1980). "Paternity and the evolution of male parentage". Journal of Theoretical Biology. 82 (4). doi:10.1016/0022-5193(80)90182-4. Retrieved 15 September 2013.
- ↑ Baylis, Jeffrey (1981). "The Evolution of Parental Care in Fishes, with reference to Darwin's rule of male sexual selection". Environmental Biology of Fishes. 6 (2). doi:10.1007/BF00002788. Retrieved 16 September 2013.
- ↑ Wootton, Robert J.; Smith, Carl (2014). Reproductive Biology of Teleost Fishes. Wiley. ISBN 978-1-118-89139-1.
- ↑ "Fossilworks: Andreolepis".
- 1 2 3 Thomas J. Near; et al. (2012). "Resolution of ray-finned fish phylogeny and timing of diversification". PNAS. pp. 13698–13703. doi:10.1073/pnas.1206625109.
- ↑ Betancur-R, Ricardo; et al. (2013). "The Tree of Life and a New Classification of Bony Fishes". PLOS Currents Tree of Life (Edition 1). doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288. Archived from the original on 13 October 2013.
- ↑ Laurin, M.; Reisz, R.R. (1995). "A reevaluation of early amniote phylogeny". Zoological Journal of the Linnean Society. 113: 165–223. doi:10.1111/j.1096-3642.1995.tb00932.x.
- 1 2 "Chondrosteans: Sturgeon Relatives". paleos.com. Archived from the original on 25 December 2010.
- ↑ Theodore Holmes Bullock; Carl D. Hopkins; Arthur N. Popper (2005). Electroreception. Springer Science+Business Media, Incorporated. p. 229. ISBN 978-0-387-28275-6.
- ↑ Betancur-R (2016). "Phylogenetic Classification of Bony Fishes Version 4".
- ↑ Nelson, Joseph, S. (2016). Fishes of the World. John Wiley & Sons, Inc. ISBN 9781118342336.
- ↑ "Actinopterygii". Integrated Taxonomic Information System. Retrieved 3 April 2006.
- ↑ R. Froese and D. Pauly, editors (February 2006). "FishBase".
- ↑ Van der Laan, Richard (2016). Family-group names of fossil fishes. doi:10.13140/RG.2.1.2130.1361.
- ↑ In Nelson, Polypteriformes is placed in its own subclass Cladistia.
- ↑ In Nelson and ITIS, Syngnathiformes is placed as the suborder Syngnathoidei of the order Gasterosteiformes.
External links
Wikispecies has information related to: Actinopterygii |
Wikimedia Commons has media related to Actinopterygii. |
- Actinopterygii at the Encyclopedia of Life
- Actinopterygii at UntamedScience.com
- Jonna, R. (2004) Actinopterygii Animal Diversity Web. Updated 29 August 2006. Accessed 2 February 2013.